首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of loach embryos is successfully regulated (normalized) after partial removal of the cytoplasm from one blastomere at the two- or four-cell stage or complete removal of one or two blastomeres at the stage of 8?C16 cells. Using time-lapse video imaging and morphometric analysis, it has been shown that this regulation is a two-stage process. At the first stage, the ratio between the volumes of the blastodisk and yolk sac is rapidly (within one or two cell cycles) restored almost to the initial level; at the second stage, morphogenesis of the embryo is modified according to its new structural features acquired after the operation. After several rounds of cytokinesis, the cytoplasm remaining in the operated blastomere fuses with the marginal yolk syncytium (periblast), which at the blastula stage forms a distinct extension at the operation site. This extension marks the site of embryonic shield formation. The results of morphometric analysis show that restoration of the initial blastoderm volume in operated embryos leads to a reduction of active tension at the blastoderm-yolk boundary and an increase in the ratio of blastoderm surface to its volume at the moment of epiboly initiation. As a result, the convergence of blastoderm cells to the operation site and the embryonic shield formation begin at a lesser degree of epiboly, compared to the control.  相似文献   

2.
Analysis of normal variation in quantitative morphological characters during the early embryonic development of the loach, based on observations on individual developmental trajectories of living embryos, shows that the dorsoventral differentiation of the blastoderm proceeds in two stages. Initially, at the onset of epiboly, the sagittal (short) and transverse (long) blastoderm meridians are marked off, and only then, upon germ ring (GR) formation, differentiation between the opposite poles of the sagittal meridian takes place. The embryonic shield (ES) usually appears in the segment of the blastoderm where the radius of its external curvature reaches a maximum and, therefore, the active surface tension at the blastoderm boundary with the YSL periblast) and yolk is the highest. In this case, the convergence of inner cells toward the future dorsal segment (leading to ES formation) is a mechanical consequence of surface tension anisotropy. The normal course of epiboly is associated with periodic changes in the curvature of the blastoderm external surface, with new structures (the dorsal segment, GR, and ES) are marked off only when the surface curvature becomes maximally uniform. Although the ES in most embryos appears within the initial dorsal segment, individual developmental trajectories have been traced where the GR starts to form at the dorsal pole of the blastoderm but the ES develops on its opposite site, at the point of GR closure. In both cases, GR formation is initiated at the point of convergence of centrifugal cell migration flows that arise in the marginal zone of the blastoderm upon GR initiation or closure.  相似文献   

3.
We describe a set of observations on developing zebrafish embryos and discuss the main conclusions they allow:(1) the embryonic dorso-ventral polarity axis is morphologically distinguishable prior to the onset of gastrulation; and (2) the involution of deep layer cells starts on the prospective dorsal side of the embryo. An asymmetry can be distinguished in the organization of the blastomeres in the zebrafish blastula at the 30% epiboly stage, in that one sector of the blastoderm is thicker than the other. Dye-labelling experiments with DiI and DiO and histological analysis allow us to conclude that the embryonic shield will form on the thinner side of the blastoderm. Therefore, this side corresponds to the prospective dorsal side of the embryo. Simultaneous injections of dyes on the thinner side of the blastoderm and on the opposite side show that involution of deep layer cells during gastrulation starts at the site at which the embryonic shield will form and extends from here to the prospective ventral regions of the germ ring.  相似文献   

4.
Early developmental staging from the zygote stage to the gastrula is a basic step for studying embryonic development and biotechnology. We described the early embryonic development of the loach, Misgurnus anguillicaudatus, based on morphological features and gene expression. Synchronous cleavage was repeated for 9 cycles about every 27 min at 20 degrees C after the first cleavage. After the 10th synchronous cleavage, asynchronous cleavage was observed 5.5 h post-fertilization (hpf), indicating the mid-blastula transition. The yolk syncytial layer (YSL) was formed at this time. Expressions of goosecoid and no tail were detected by whole-mount in situ hybridization from 6 hpf. This time corresponded to the late-blastula period. Thereafter, epiboly started and a blastoderm covered over the yolk cell at 8 hpf. At 10 hpf, the germ ring and the embryonic shield were formed, indicating the stage of early gastrula. Afterward, the epiboly advanced at the rate of 10% of the yolk cell each hour. The blastoderm covered the yolk cell completely at 15 hpf. The embryonic development of the loach resembled that of the zebrafish in terms of morphological change and gene expression. Therefore, it is possible that knowledge of the developmental stages of the zebrafish might be applicable to the loach.  相似文献   

5.
Annual fish development differs from that of other teleosts because a phase of blastomere dispersion-reaggregation spatially and temporally separates epiboly from embryogenesis. The fate of dispersed blastomeres was assessed in diblastodermic eggs of the annual fishes Cynolebias whitei and C. nigripinnis. In typical teleosts, blastomere determination and the events of primary embryonic induction occur prior to or during epiboly, so diblastodermic eggs produce partially or completely duplicated embryos. In the diblastodermic eggs of Cynolebias, the two blastoderms are completely separate from the one cell stage to the high blastula. Blastoderm fusion begins during midepiboly. By the end of epiboly, blastoderm fusion has been completed, and the deep, embryo-forming blastomeres of both blastoderms have completely dispersed and intermingled to form a single cell population. A typical annual fish dispersed blastomere phase ensues. Blastomeres reaggregate into a single mass, in which one embryo develops. When hatched, the young fish have no obvious structural or functional abnormalities. We suggest that the dispersed blastomeres of annual fish eggs are equivalent and that induction or determination takes place within the reaggregate. Alternatively, dispersed cells are partially determined but highly regulative, so that, when two populations fuse, the cells sort out according to tissue type and form a single embryo. In either instance, the formation of a single, normal embryo seems to corroborate the hypothesis that the dispersed cell phase of annual fishes is an adaptation that prevents environmentally induced developmental defects. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
This paper summarizes evidence for the following picture ofFundulus epiboly, with an eye toward laying groundwork for futureinvestigation. The major force in epiboly is the yolk syncytiallayer (YSL). Prior to epiboly, it spreads well beyond the borderof the blastoderm to form the wide external YSL (E-YSL). Thishas contractile properties, which, however, are restrained priorto epiboly by the attached enveloping layer (EVL) of the blastoderm.Epiboly begins when the E-YSL contracts and narrows, throwingits surface into folds and pulling the internal YSL (I-YSL)and the attached EVL vegetally. When the narrowing of the E-YSLhas ceased, it is postulated that its contractility continuesas a circumferential wave of vegetally directed contractionthat moves over the yolk toward the vegetal pole, dragging theI-YSL and the attached EVL (and blastoderm) with it. The mostobvious visible manifestation of this wave is a marked marginalconstriction, where the YSL joins the yolk cytoplasmic layer(YCL). As this contractile wave passes over the yolk, cytoplasmfrom the YCL mingles with that of the advancing E-YSL, and YCLsurface adds to the already highly convoluted surface of theE-YSL. This folded surface is the site of a thin, highly localizedband of rapid endocytosis that encircles the egg and passesover it with the E-YSL in a wave throughout epiboly. This internalization,which is receptor independent and therefore somehow programmed,accompanies the putative contractile wave, and accounts forthe disappearance of the surface of the YCL. Since the YCL surfacestands in the way of the advancing YSL, its internalizationis part of the mechanism of epiboly. As the I-YSL expands inresponse to this marginal pull, its abundant microvilli graduallydisappear, providing surface for its epiboly. The firmly attachedEVL likewise expands toward the vegetal pole in response tothe pull of the autonomously expanding YSL. As epiboly of theEVL progresses, it adjusts to the geometric problems posed bya sheet expanding over a sphere by active cell rearrangementwithin the cell monolayer. Thus, epiboly of the EVL has an activeas well as a passive component. Deep cells are not causallyinvolved in epiboly, but move about in coordinated ways in theconstantly increasing space between the I-YSL and the EVL providedby epiboly and form the germ ring and the embryonic shield andeventually the embryo proper. An attempt is made to pull allof this together, and more, in order to achieve as comprehensivean understanding of epiboly as present evidence will allow.  相似文献   

8.
One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.  相似文献   

9.
Oocyte cytoplasm plays a prominent role in cloned embryonic development. To investigate the influence of oocyte cytoplasmic amount on cloned embryo development, we generated bovine somatic cell nuclear transfer (SCNT) embryos containing high (30-40% of the cytoplasm was removed), medium (15-25% of the cytoplasm was removed) and low (<10% of the cytoplasm was removed) nucleocytoplasmic volume ratios (N/C) using enucleated metaphase II oocyte as recipient, and fibroblast as donor nucleus, and analyzed the expression levels of ND1, Cytb and ATPase6, as well as the embryonic quality. The results indicated: (1) the process of embryonic development was not influenced by <40% of cytoplasm removal; (2) the rate of blastocyst formation, the total number of blastomere and the ratio of ICM to TE were inversely proportional to the N/C; (3) SCNT embryos with reduced volume equal to 75-85% or >90% of an intact oocyte volume showed similar karyotype structure of the donor cells; (4) the number of mtDNA copy was larger in low N/C embryos than that in medium or high N/C embryos, and the expression levels of each gene hardly varied from the 2-cell to 8-cell stage, while the expression levels increased dramatically at the blastocyst stage; (5) from 16-cell to the blastocyst stage, the change of the expression level of each gene was not significant between low N/C embryos and IVF embryos, but it was more significant than those of high or medium N/C embryos. The results suggest that the decrease of mtDNA copy number and mitochondrial gene expression may be related to the impairment in early embryonic development, and removal of <10% adjacent cytoplasm volume may be optimal for bovine SCNT embryo development.  相似文献   

10.
Embryonic morphogenesis takes place via a series of dramatic collective cell movements. The mechanisms that coordinate these intricate structural transformations across an entire organism are not well understood. In this study, we used gentle mechanical deformation of developing zebrafish embryos to probe the role of physical forces in generating long-range intercellular coordination during epiboly, the process in which the blastoderm spreads over the yolk cell. Geometric distortion of the embryo resulted in nonuniform blastoderm migration and realignment of the anterior-posterior (AP) axis, as defined by the locations at which the head and tail form, toward the new long axis of the embryo and away from the initial animal-vegetal axis defined by the starting location of the blastoderm. We found that local alterations in the rate of blastoderm migration correlated with the local geometry of the embryo. Chemical disruption of the contractile ring of actin and myosin immediately vegetal to the blastoderm margin via Ca2+ reduction or treatment with blebbistatin restored uniform migration and eliminated AP axis reorientation in mechanically deformed embryos; it also resulted in cellular disorganization at the blastoderm margin. Our results support a model in which tension generated by the contractile actomyosin ring coordinates epiboly on both the organismal and cellular scales. Our observations likewise suggest that the AP axis is distinct from the initial animal-vegetal axis in zebrafish.  相似文献   

11.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

12.
Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.  相似文献   

13.
The embryonic surface of the teleost, Oryzias latipes , was observed by scanning electron microscopy (SEM) to examine the last phase of epiboly or blastopore closure. The surface of the external yolk syncytial layer (E–YSL), a surface cytoplasmic layer encompassing the yolk sphere situated beyond the blastoderm, was highly undulated with surface folds of random orientation throughout most of epiboly (st. 14–20). Scattered microvilli were observed on the surface of the margin of the yolk plug in st. 18–20. The microvilli, 1 to 6 μm in length, were projected in a bunch at the end of blastopore closure (st. 20–21). The appearance of these microvilli in the last phase of epiboly is discussed with respect to the mechanism of epiboly.  相似文献   

14.
The eggs of African mouth-brooders are of unusual size and shape. Studying their development may help to more clearly understand epiboly, gastrulation, and the relation between enveloping layer (periderm) and epidermis. When epiboly has progressed over just one fifth of the yolk mass, the germ ring and embryonic shield are already well established. Behind the germ ring very few deep cells are present at this early stage of epiboly, except in the embryonic shield. When the blastodisc covers the animal half of the yolk mass, the future body is already well established with notochord, somites and developing neural keel. Apart from these structures, no deep cells can be detected between enveloping layer and yolk surface; not even a germ ring remains behind the advancing edge of the enveloping layer. Epiboly over the greater part of the yolk is achieved only by the enveloping layer and the yolk syncytial layer. As the margin of the enveloping layer begins to reduce its circumference when closing around the vegetal pole, groups of cells in the advancing edge become spindle-shaped, with a single cell in between of each of these groups broadening along the edge. The enveloping layer (called periderm after epiboly) remains intact until after hatching, when, together with the underlying ectoderm, it forms the double-layered skin of the larval fish. Thereafter, cells deriving from the subperipheral ectoderm gradually replace the decaying periderm cells to form the final epidermis. Thus, in the cichlids studied, the enveloping layer alone forms the yolk sac to begin with, and it covers the larval body until some days after hatching.  相似文献   

15.
A major question in the analysis of teleost epiboly is the fateof the yolk cytoplasmic layer. It diminishes during epibolyand eventually disappears at the completion of epiboly. Thispaper is concerned with the fate of the surface of the yolkcytoplasmic layer during epiboly. When gastrulae during epibolyare bathed in lucifer yellow (CH) and then observed with fluorescentmicroscopy or bathed in ferritin and then fixed and observedwith TEM, a thin circumferential ring of endocytic vesiclesis observed, confined to the external yolk syncytial layer justperipheral to the advancing margin of the blastoderm. Even thoughthe entire egg is immersed in the marker, endocytosis is confinedto this limited region. More precisely, this endocytosis occursonly within the region of the external yolk syncytial layer,where the surface is most folded. The endocytic vesicles thusformed move downward and settle on the surface of the membraneseparating the yolk from the cytoplasm in the yolk syncytiallayer. They do not join the surface of the internal yolk syncytiallayer; hence they do not contribute to its expansion. Priorto the onset of epiboly there is no such endocytosis at thesurface of the egg. Since this endocytosis occurs only duringepiboly and only at the surface of the external yolk syncytiallayer just peripheral to the advancing margin of the blastoderm,and in the absence of large molecules in the medium, we concludethat it is programmed. We, therefore, present this as a caseof programmed internalization of cell surface serving as themorphogenetic mechanism responsible for the disappearance ofthe surface of the yolk cytoplasmic layer during gastrulationof the teleost Fundulus heteroclitus  相似文献   

16.
Examination of normal shaping dynamics and immediate and long-term responses to blastoderm cutting in zebrafish and loach embryos prior to the onset of gastrulation and during the course of epiboly revealed that anteroposterior (AP) and dorsoventral (DV) polarity formation is connected with shaping of the blastoderm circumferential region, which stretches along and shrinks across its movement axes and originates the non-isotropic fields of tensile stresses. Based on data from cutting experiments and quantitative morphology, we reconstructed the movement-shaping patterns of epiboly and embryonic shield formation. We revealed that AP and DV axes originate as a mass cell movement subject to the movement-shaping equivalence principle, which means the spatial series of differently shaped areas corresponding to the time succession of the same area shaping. Maintenance of the main body axes in orthogonal orientation depends on the mechanical equilibrium principle allowing for converting shape asymmetry into that of tensile stresses and vice versa. The causal relationship between the main movement-shaping axes and that of embryonic polarity was proved in cutting experiments in which the DV axis direction was subject to rearrangement so as to adjust to the new direction of mass cell movement axes induced by healing the wound in the blastoderm circumferential region.  相似文献   

17.
It has been reported that nuclei repeat parasynchronous mitosis four or five times in the yolk syncytial layer (YSL) of the embryo of the medaka, Oryzias latipes , during the blastula stage and that no mitosis occurs in the YSL after the gastrula stage. The present investigation demonstrated the size of nuclei and the number of nucleoli and their staining properties with DNA binding dye. The results indicate that the YSL nuclei actively transcribe RNA and that their DNA content is greater than that of somatic nuclei. The onset and subsequent time course of polyploidization were examined in embryos stained with 4',6-diamidino-2-phenylindole (DAPI) by epifluorescence microspectrophotometry from the cessation of mitosis through hatching. Embryos included YSL nuclei whose DNA content spanned from diploid (2C), tetraploid (4C) to octaploid (8C) at the end of the late blastula stage. The last two populations are produced probably by their early cessation of mitosis and the subsequent duplication of DNA without mitosis or by endoreduplication. The frequency distribution of the DNA content examined during epiboly of the blastoderm suggests that each population is duplicated again until the beginning of the gastrula stage and then once more until the end of epiboly. Eventually these nuclei include polyploid DNA between 8C and 64C or more during later embryonic development.  相似文献   

18.
A complete zebrafish mespo cDNA encoding a protein of 131 amino acids with a bHLH domain in the C-terminal has been isolated. The bHLH domain of zebrafish Mespo is highly similar to those in the mouse, chick and Xenopus, sharing 82.4%, 80.4% and 74.5% amino acid identity, respectively. At 50% epiboly, the zebrafish mespo is first detected in the marginal zone of the blastoderm but excluding the prospective shield. Subsequently, mespo expression is intensified in the involuting mesoderm at 60% epiboly, and then restricted to the presomitic mesoderm (PSM) at 95% epiboly. At the 1-somite stage, mespo expression becomes reduced in the most rostral PSM. During segmentation, mespo expression is gradually downregulated at the most rostral segmental plate where cells are being coalesced to form somites. In spadetail mutant embryos, most of mespo-expressing cells were missing.  相似文献   

19.
 Injections of lucifer yellow and fluorescein dyes into loach (Misgurnus fossilis) and zebrafish (Danio rerio) embryos were used to analyse the intercellular communication via gap junctions (GJs) and their role in morphogenetic processes during the period from early blastula to late gastrula. It is shown that the efficiency of dye transfer between the superficial blastomeres increases by the late blastula stage. Blastomeres of the basal layer, on the other hand, become gradually uncoupled from the yolk cell (YC). This process is spatially uneven and finishes by the late gastrula stage. Prior to it, at the early epiboly stage, a local increase in dye transfer is observed in the circular zone of the blastoderm margin. During gastrulation, GJ communication between blastomeres and the YC in this zone and also in the newly-formed germ ring region (the prospective mesoderm domain) persists for a longer period of time (up to the stage of 60–70% epiboly) than in the remaining part of the basal layer (the prospective ectoderm domain). Taking into account the data on changes in the adhesive properties of blastomeres during normal development and observations on embryos with retarded epiboly, we hypothesize that changes in GJ communication between superficial blastomeres, on one hand, and between basal blastomeres and the YC, on the other, are the consequences of the same, more general morphogenetic process of compaction occurring within the blastoderm, which supports epiboly and is probably responsible for the distinction between mesodermal and ectodermal fates of cells differently located within the forming epithelioid sheet. Received: 18 October 1996 / Accepted: 4 April 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号