首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the Pleistocene glaciations, the Alps were an efficient barrier to gene flow between isolated populations, often leading to allopatric speciation. Afterwards, the Alps strongly influenced the post-glacial recolonization of Europe and represent a major suture zone between differentiated populations. Two hybrid zones in the Swiss and French Alps between genetically and chromosomally well-differentiated species-the Valais shrew, Sorex antinorii, and the common shrew, S. araneus-were studied karyotypically and by analyzing the distribution of seven microsatellite loci. In the center of the Haslital hybrid zone the two species coexist over a distance of 900 m. Hybrid karyotypes, among them the most complex known in Sorex, are rare. F-statistics based on microsatellite data revealed a strong heterozygote deficit only in the center of the zone, due to the sympatric distribution of the two species with little hybridization between them. Structuring within the species (both F(IS) and F(ST)) was low. An hierarchical analysis showed a high level of interspecific differentiation. Results were compared with those previously reported in another hybrid zone located at Les Houches in the French Alps. Genetic structuring within and between species was comparable in both hybrid zones, although chromosomal incompatibilities are more important in Haslital, where a linkage block of the race-specific chromosomes should additionally impede gene flow. Evidence for a more restricted gene flow in Haslital comes from the genetically intermediate hybrid karyotypes, whereas in Les Houches, hybrid karyotypes are genetically identical to individuals of the pure karyotypic races. Genic and chromosomal introgression was observed in Les Houches, but not in Haslital. The possible influence of a river, separating the two species at Les Houches, on gene flow is discussed.  相似文献   

2.
Individuals sampled in hybrid zones are usually analysed according to their sampling locality, morphology, behaviour or karyotype. But the increasing availability of genetic information more and more favours its use for individual sorting purposes and numerous assignment methods based on the genetic composition of individuals have been developed. The shrews of the Sorex araneus group offer good opportunities to test the genetic assignment on individuals identified by their karyotype. Here we explored the potential and efficiency of a Bayesian assignment method combined or not with a reference dataset to study admixture and individual assignment in the difficult context of two hybrid zones between karyotypic species of the Sorex araneus group. As a whole, we assigned more than 80% of the individuals to their respective karyotypic categories (i.e. 'pure' species or hybrids). This assignment level is comparable to what was obtained for the same species away from hybrid zones. Additionally, we showed that the assignment result for several individuals was strongly affected by the inclusion or not of a reference dataset. This highlights the importance of such comparisons when analysing hybrid zones. Finally, differences between the admixture levels detected in both hybrid zones support the hypothesis of an impact of chromosomal rearrangements on gene flow.  相似文献   

3.
An extreme case of chromosomal evolution is presented by the two muntjac species Muntiacus muntjac (Indian muntjac, 2n = 6 [females], 7 [males]) and M. reevesi (Chinese muntjac, 2n = 46). Despite disparate karyotypes, these phenotypically similar species produce viable hybrid offspring, indicating a high degree of DNA-level conservation and genetic relatedness. As a first step toward development of a comparative gene map, several Indian muntjac homologs of known human type I anchor loci were mapped. Using flow-sorted, chromosome-specific Southern hybridization techniques, homologs of the protein kinase C beta polypeptide (PRKCB1) and the DNA repair genes ERCC2 and XRCC1 have been assigned to Indian muntjac chromosome 2. The male-specific ZFY gene was presumptively mapped to Indian muntjac chromosome Y2. Ultimate generation of a comparative physical map of both Indian and Chinese muntjac chromosomes will prove invaluable in the study of mammalian karyotype evolution.  相似文献   

4.
The West European house mouse, Mus musculus domesticus, is a particularly suitable model to investigate the role of chromosomal rearrangements in reproductive isolation. In fact, it exhibits a broad range of chromosomal polymorphism due to Robertsonian (Rb) fusions leading to various types of contact zones between different chromosomal races. In the present study, we analyzed a parapatric contact in central Italy between the Cittaducale chromosomal race (CD: 2n= 22) and the surrounding populations with standard karyotype (2n= 40) to understand if Rb fusions play a causative role in speciation. One hundred forty‐seven mice from 17 localities were genotyped by means of 12 microsatellite loci. A telomeric and a pericentromeric locus situated on six chromosome arms (four Rbs and one telocentric) were selected to detect differences in the amount of gene flow for each locus in different chromosomal positions. The analyses performed on the two subsets of loci show differences in the level of gene flow, which is more restricted near the centromeres of Rb chromosomes. This effect is less pronounced in the homozygotes populations settled at the border of the hybrid zone. We discuss the possible cause of the differential porosity of gene flow in Rbs considering “hybrid dysfunctions” and “suppressed recombination” models.  相似文献   

5.
Cross-species reciprocal chromosome painting was used to delineate homologous chromosomal segments between domestic dog, red fox, and human. Whole sets of chromosome-specific painting probes for the red fox and dog were made by PCR amplification of flow-sorted chromosomes from established cell cultures. Based on their hybridization patterns, a complete comparative chromosome map of the three species has been built. Thirty-nine of the 44 synteny groups from the published radiation hybrid map and 33 of the 40 linkage groups in the linkage map of the dog have been assigned to specific chromosomes by fluorescence in situ hybridization and PCR-based genotyping. Each canine chromosome has at least one DNA marker assigned to it. The human-canid map shows that the canid karyotypes are among the most extensively rearranged karyotypes in mammals. Twenty-two human autosomal paints delineated 73 homologous regions on 38 canine autosomes, while paints from 38 dog autosomes detected 90 homologous segments in the human genome. Of the 22 human autosomes, only the syntenies of three chromosomes (14, 20, and 21) have been maintained intact in the canid genome. The dog-fox map and DAPI banding comparison demonstrate that the remarkable karyotype differences between fox (2n = 34 + 0-8 Bs) and dog (2n = 78) are due to 26 chromosomal fusion events and 4 fission events. It is proposed that the more easily karyotyped fox chromosomes can be used as a common reference and control system for future gene mapping in the DogMap project and CGH analysis of canine tumor DNA.  相似文献   

6.
Variability of karyotypes is one of the main mechanisms of speciation in organisms. Electrophoretic karyotypes of the macronucleus (MAC) obtained by pulsed-field gel electrophoresis were compared for 86 strains of all 15 sibling species of the Paramecium aurelia complex in order to determine if karyotype differences corresponded to biological species boundaries. Because the electrophoretic karyotype of the MAC reflects indirectly the frequency and distribution of fragmentation sites in the micronuclear (MIC) chromosomes, any change in MAC electrophoretic karyotype may be a marker of certain chromosomal mutations in the MIC. Thirteen main variants of electrophoretic MAC karyotypes were observed in this species complex. Ten of them appeared to correspond to biological species, while the three other variants characterized several species each. Intraspecific polymorphism was observed for several species: in some cases a certain variant of MAC karyotype was specific for all strains from the same part of the world. Distribution of the MAC karyotype variants along molecular phylogenetic trees of the P. aurelia complex shows that isolation of each species or group of species of this complex was accompanied by divergence in the molecular organization of the genome.  相似文献   

7.
The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.  相似文献   

8.
The contact points of four karyotypic races (St. Petersburg, Moscow, Seliger and West Dvina) of the common shrew Sorex araneus L. were studied at the Valdai Hills (European Russia) in an area unimpeded by geographic barriers. The populations of the races are separated by narrow hybrid zones that represent the most complex heterozygous hybrid karyotypes. At these points of contact, the morphometric differentiation of karyotype races was examined in 12 cranial measurements in 190 shrews of a known karyotype. A comparison of the mean values in studied samples of immature shrews revealed statistically significant differences and the correlation of some measurements which describe the level of musculus temporalis. It has been proposed that morphometric differences in the karyotypic races were preserved and accumulated because of a 50% reduction of the frequencies of hybrids. The deviation from the Hardy-Weinberg ration in the frequencies of the genotype and haploid sets of chromosomes in the hybrid zones can be attributed to a number of fatalities of hybrid embryos or the nonrandom mating of karyotypic races. The ethological isolation might arise in the evolution of some karyotypic races from the reduced fitness of the hybrids.  相似文献   

9.
Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.  相似文献   

10.
Hybridization can either reinforce or erode species boundaries; therefore, hybrid zones offer a natural experimental setting in which to assess the dynamics of reproductive isolation. Secondary contact zones, in particular, present a partial separation of the original divergence mechanisms and the subsequent genomic architecture of reproductive isolation (or lack thereof). The spatial context of secondary contact and its consequent effect on dispersal play vital roles on the contact’s outcome. In a hybrid complex between two towhee species in Mexico, Pipilo maculatus and Pipilo ocai, two major hybrid gradients provide natural replicates for comparison. However, genetic analyses demonstrate significant divergence between geographically separate parental populations of each species and divergence of populations within each hybrid zone. The two hybrid transects (Teziutlán and Transvolcanic) are distinct and evidence suggests allelic introgression both across the species boundary and between the two transects. Habitat corridors for dispersal represent functional connectivity hotspots where the two transects meet. Both habitat connectivity and genetic differentiation between geographically disparate parental populations appear to influence the dynamics of gene flow across the hybrid gradients. In southern sympatric populations (Mt. Orizaba and Oaxaca) where morphological evidence for hybridization is scarce, opposing species’ alleles appear to traverse through the hybrid zones rather than arising from cryptic local hybridization. These results illustrate the importance of environmentally mediated gene flow in the context of secondary contact as an important force influencing evolutionary trajectory.  相似文献   

11.
During postglacial colonization, populations that diverged in different refugia produced a patchwork of genomes, often delimited with sharp hybrid zones. The outcome of hybridization following the secondary contact of two genetically distinct populations is hard to predict. In this context, the present study investigated the genetic structure of the hybrid zone between the Drnholec and Białowieża chromosome races of the common shrew ( Sorex araneus ) in Poland using biparentally inherited (seven autosomal microsatellites) and uniparentally inherited (Y-linked microsatellite and mtDNA) molecular markers. On the basis of diagnostic chromosomes, the Drnholec and Białowieża races were classified to different karyotypic groups, which were believed to have independent glacial histories. It was found that genetic differentiation between the Drnholec and Białowieża races was weak and nonsignificant with respect to all molecular markers. However, these results are in contrast with the chromosomal structure of this hybrid zone. The very sharp frequency clines of the diagnostic chromosomes strongly suggest that gene flow between the Drnholec and Białowieża races was reduced. Nonsignificant correlations between genetic differentiation and both the presence of an environmental barrier and geographical distance reveal that only differences in karyotypes might be a reason for limited gene exchange between the races. It is assumed that a lack of molecular differences between the Drnholec and Białowieża races results from a shared ancestral variation.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 79–90.  相似文献   

12.
Ligularia , a highly diversified genus in the eastern Qinghai–Tibet Plateau and adjacent areas, was chosen as a suitable subject in which to study speciation patterns in this 'hot spot' area at the chromosomal level. Chromosome numbers and karyotypes were studied in 23 populations of 14 species, most of which are endemic to this area. The basic number x  = 29 was confirmed for all species. Ligularia virgaurea was found to have diploid and triploid cytotypes, 2 n  = 58 and 87. Other species are only diploid, with 2 n  = 58. The karyotypes of all populations within any species, and all species spanning most sections and covering most of the morphological range in Ligularia , are very similar to each other, belonging to type 2A according to Stebbin's classification. This karyotype was also found in its close allies, e.g. Cremanthodium , Ligulariopsis , Parasenecio , and Sinacalia . Aneuploid reduction of chromosome number from 2 n  = 60 to 58 and karyotypic variation was found in Ligularia and its allies. Such a chromosomal pattern with few polyploids infers that variation of karyotype structure at the diploid level seems to be the predominant feature of chromosomal evolution in this group and sympatric speciation via hybridization and polyploidization has played a minor role in its species diversity.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 329–342.  相似文献   

13.
Western house mice (Mus musculus domesticus) and common shrews (Sorex araneus) are important models for study of chromosomal speciation. Both had ancestral karyotypes consisting of telocentric chromosomes, and each is subdivided into numerous chromosomal races many of which have resulted from fixation of new mutations (Robertsonian fusions and whole‐arm reciprocal translocations). However, some chromosomal races in both species may alternatively have originated through hybridization, with particular homozygous recombinant products reaching fixation. Here, we demonstrate the process of generation of hybrid chromosomal races for the first time in either species using molecular markers. Analysis of centromeric microsatellite markers show that the Mid Valtellina (IMVA) and Upper Valtellina (IUVA) chromosomal races of the house mouse are recombinant products of hybridization of the Lower Valtellina (ILVA) and Poschiavo (CHPO) chromosomal races, supporting earlier theoretical analysis. IMVA and IUVA occupy a small area of the Italian Alps where ILVA makes contact with CHPO. IUVA and CHPO have previously been shown to be reproductively isolated in one village, emphasizing that hybrid chromosomal races in small mammals, as in plants, have the potential to be part of the speciation process.  相似文献   

14.
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise FST between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.  相似文献   

15.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

16.
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.  相似文献   

17.
ZOO-FISH (Fluorescent "in vitro" hybridization) was used to establish the chromosomal homology between humans (HSA) and Cebus nigrivitatus (CNI) and Ateles belzebuth hybridus (ABH). These two species belong to different New World monkey families (Cebidae and Atelidae, respectively) which differ greatly in chromosome number and in chromosome morphology. The molecular results were followed by a detailed banding analysis. The ancestral karyotype of Cebus was then determined by a comparison of in situ hybridization results, as well as chromosomal morphology and banding in other Platyrrhini species. The karyotypes of the four species belonging to the genus Cebus differ from each other by three inversions and one fusion as well as in the location and amounts of heterochromatin. Results obtained by ZOO-FISH in ABH are in general agreement with previous gene-mapping and in situ hybridization data in Ateles, which show that spider monkeys have highly derived genomes. The chromosomal rearrangements detected between HSA and ABH on a band-to-band basis were 27 fusions/fissions, 12 centromeric shifts, and six pericentric inversions. The ancestral karyotype of Cebus was then compared with that of Ateles. The rearrangements detected were 20 fusions/fissions, nine centromeric shifts, and five inversions. Atelidae species are linked by a fragmentation of chromosome 4 into three segments forming an association of 4/15, while Ateles species are linked by 13 derived associations. The results also helped clarify the content of the ancestral platyrrhine karyotype and the mode of chromosomal evolution in these primates. In particular, associations 2/16 and 5/7 should be included in the ancestral karyotype of New World monkeys.  相似文献   

18.
Recent theoretical developments have led to a renewed interest in the potential role of chromosomal rearrangements in speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) provide an excellent study system to test this potential role of chromosomal rearrangements because they show extensive chromosomal variation and formed the basis of a classic chromosomal speciation model. There are three chromosomal races, viatica19, viatica17, and P24(XY), on Kangaroo Island, South Australia, forming five parapatric populations with four putative contact zones among them. We investigate the extent to which chromosomal variation among these populations may be associated with barriers to gene flow. Population genetic and phylogeographical analyses using 15 variable allozyme loci and the elongation factor-1alpha (EF-1alpha) gene indicate that the three races represent genetically distinct taxa. In contrast, analyses of the mitochondrial cytochrome c oxidase subunit I (COI) gene show the presence of three distinctive and geographically localized groups that do not correspond with the distribution of the chromosomal races. These discordant population genetic patterns are likely to result from introgressive hybridization between the chromosomal races and range expansions/contractions. Overall, these results suggest that reduction of nuclear gene flow may be associated with chromosomal variation, or underlying genetic variation linked with chromosomal variation, whereas mitochondrial gene flow appears to be independent of this variation in these morabine grasshoppers. The identification of an intact contact zone between P24(XY) and viatica17 offers considerable potential for further investigation of molecular mechanisms that maintain distinct nuclear genomes among the chromosomal races.  相似文献   

19.
The karyotypes have been determined of 16 of the 32 species of the genus Varanus, including animals from Africa, Israel, Malaya and Australia. A constant chromosome number of 2n = 40 was observed. The karyotype is divided into eight pairs of large chromosomes and 12 paris of microchromosomes. A series of chromosomal rearrangements have become established in both size groups of the karyotype and are restricted to centromers shifts, probably caused by pericentric inversion. Species could be placed in one of six distinct karyotype groups which are differentiated by these rearrangements and whose grouping does not always correspond with the current taxonomy. An unusual sex chromosome system of the ZZ/ZW type was present in a number of the species examined. The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed and related to the current taxonomic groupings. The most likely phylogenetic model based on chromosome morphology, fossil evidence and the current distribution of the genus Varanus is presented.  相似文献   

20.
Whether chromosomal rearrangements promote speciation by providing barriers to gene exchange between populations is one of the long-standing debates in evolutionary biology. This question can be addressed by studying patterns of gene flow and selection in hybrid zones between chromosomally diverse taxa. Here we present results of the first study of the genetic structure of a hybrid zone between chromosomal races of morabine grasshoppers Vandiemenella viatica , P24(XY) and viatica 17, on Kangaroo Island, Australia. Chromosomal and 11 nuclear markers revealed a narrow hybrid zone with strong linkage disequilibrium and heterozygote deficits, most likely maintained by a balance between dispersal and selection. Widths and positions of clines for these markers are concordant and coincident, suggesting that selection is unlikely to be concentrated on a few chromosomes. In contrast, a mitochondrial marker showed a significantly wider cline with centre offset toward the P24(XY) side. We argue that the discordance between the mitochondrial and nuclear/chromosomal clines and overall asymmetry of the clines suggest a secondary origin of the contact zone and potential movement of the zone after contact. Genome-wide scans using many genetic markers and chromosomal mapping of these markers are needed to investigate whether chromosomal differences directly reduce gene flow after secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号