首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Badaeva ED 《Genetika》2002,38(6):799-811
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis, and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploid Ae. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnaris and Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata; however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   

2.
 Six polyploid Aegilops species containing the D genome were studied by C-banding and fluorescence in situ hybridization (FISH) using clones pTa71 (18S-5.8S-26S rDNA), pTa794 (5S rDNA), and pAs1 (non-coding repetitive DNA sequence) as probes. The C-banding and pAs1-FISH patterns of Ae. cylindrica chromosomes were identical to those of the parental species. However, inactivation of the NOR on chromosome 5D with a simultaneous decrease in the size of the pTa71-FISH site was observed. The Nv and Dv genomes of Ae. ventricosa were somewhat modified as compared with the N genome of Ae. uniaristata and the D genome of Ae. tauschii. Modifications included minor changes in the C-banding and pAs1-FISH patterns, complete deletion of the NOR on chromosome 5Dv, and the loss of several minor 18S-5.8S-26S rDNA loci on Nv genome chromosomes. According to C-banding and FISH analyses, the Dcr1 genome of Ae. crassa is more similar to the Dv genome of Ae. ventricosa than to the D genome of Ae. tauschii. Mapping of the 18S-5.8S-26S rDNA and 5S rDNA loci by multicolor FISH suggests that the second (Xcr) genome of tetraploid Ae. crassa is a derivative of the S genome (section Emarginata of the Sitopsis group). Both genomes of Ae. crassa were significantly modified as the result of chromosomal rearrangements and redistribution of highly repetitive DNA sequences. Hexaploid Ae. crassa and Ae. vavilovii arose from the hybridization of chromosomal type N of tetraploid Ae. crassa with Ae. tauschii and Ae. searsii, respectively. Chromosomal type T1 of tetraploid Ae. crassa and Ae. umbellulata were the ancestral forms of Ae. juvenalis. The high level of genome modification in Ae. juvenalis indicates that it is the oldest hexaploid species in this group. The occurrence of hexaploid Ae. crassa was accompanied by a species-specific translocation between chromosomes 4Dcr1 and 7Xcr. No chromosome changes relative to the parental species were detected in Ae. vavilovii, however, its intraspecific diversity was accompanied by a translocation between chromosomes 3Xcr and 3Dcr1. Received July 24, 2001 Accepted October 1, 2001  相似文献   

3.
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross‐species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next‐generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross‐genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter‐ and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.  相似文献   

4.
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis,and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploidAe. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnarisand Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata;however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   

5.
The origin of spelt and free-threshing hexaploid wheat   总被引:1,自引:0,他引:1  
It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.  相似文献   

6.
Lili Qi  Bend Friebe  Bikram S Gill 《Génome》2006,49(12):1628-1639
Most pericentromeric regions of eukaryotic chromosomes are heterochromatic and are the most rapidly evolving regions of complex genomes. The closely related genomes within hexaploid wheat (Triticum aestivum L., 2n=6x=42, AABBDD), as well as in the related Triticeae taxa, share large conserved chromosome segments and provide a good model for the study of the evolution of pericentromeric regions. Here we report on the comparative analysis of pericentric inversions in the Triticeae, including Triticum aestivum, Aegilops speltoides, Ae. longissima, Ae. searsii, Hordeum vulgare, Secale cereale, and Agropyron elongatum. Previously, 4 pericentric inversions were identified in the hexaploid wheat cultivar 'Chinese Spring' ('CS') involving chromosomes 2B, 4A, 4B, and 5A. In the present study, 2 additional pericentric inversions were detected in chromosomes 3B and 6B of 'CS' wheat. Only the 3B inversion pre-existed in chromosome 3S, 3Sl, and 3Ss of Aegilops species of the Sitopsis section, the remaining inversions occurring after wheat polyploidization. The translocation T2BS/6BS previously reported in 'CS' was detected in the hexaploid variety 'Wichita' but not in other species of the Triticeae. It appears that the B genome is more prone to genome rearrangements than are the A and D genomes. Five different pericentric inversions were detected in rye chromosomes 3R and 4R, 4Sl of Ae. longissima, 4H of barley, and 6E of Ag. elongatum. This indicates that pericentric regions in the Triticeae, especially those of group 4 chromosomes, are undergoing rapid and recurrent rearrangements.  相似文献   

7.
The aim of the experiments was to produce and identify different Triticum aestivum-Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum-Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, U(b)U(b)M(b)M(b)), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat-Ae. biuncialis addition lines were produced from the wheat-Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.  相似文献   

8.
Pestsova EG  Börner A  Röder MS 《Hereditas》2001,135(2-3):139-143
New wheat introgression lines were obtained which contain different segments of individual chromosomes of Aegilops tauschii in the Triticum aestivum cv. 'Chinese Spring' background. The introgression lines were developed to examine various subsets of alleles from the wild grass in the genetic background of common wheat. As starting point substitution lines of 'Chinese Spring' in which single chromosomes of the D genome had been replaced by homologous chromosomes of a synthetic wheat were used. Synthetic wheat had been obtained earlier from a cross between the tetraploid emmer (genomes AABB) and wild grass Aegilops tauschii (genome DD). The seven wheat chromosome substitution lines carrying different chromosomes of Ae. tauschii were crossed twice to T. aestivum cv. 'Chinese Spring' and 259 BC1-progeny plants were analysed. Phenotypic evaluation was carried out for different traits such as plant height, spikelet number, peduncle length, flowering time, spike length, tiller number, grain weight per ear, fertility and thousand kernel weight. Genotypic analysis was performed using a set of 65 microsatellite markers previously mapped on the chromosomes of the D genome of wheat. During this analysis recombinant lines carrying different segments of Ae. tauschii chromosomes were detected. Plants containing small introgressions of the alien genetic material were selfed to get homozygous lines and plants carrying large pieces of the donor chromosome were backcrossed again to get smaller introgressions. Further microsatellite analysis of selected BC1F2-progeny plants resulted in detection of a first set of 36 homozygous lines carrying different pieces of Ae. tauschii genome.  相似文献   

9.
山羊草属核型分析及其与小麦属的进化关系   总被引:2,自引:0,他引:2  
作者研究了山羊草属(Aegilops)中的新疆节节麦(Ae.squarrosa)、拟斯卑尔脱山羊草(Ae.speltoides)、沙融山羊草(Ae.sharonensis)、尾状山羊草(Ae.caudata)、卵圆山羊草(Ae.ovata)、偏凸山车草(Ae.ventricosa),钩状山羊草(Ae.triuncialis)、三芒山羊草(Me.triaristata)、欧山羊草(Ae.biuncialis)、柱穗山羊草(Ae.cylindrica)、可兹山羊草(Ae.kotschyi)和肥厚山羊草(Ae.crassa)的核型和部分材料的Giemsa N-带,结果表明山羊草属的C组核型为:4sm+3st;D组核型为:6m+1sm;S组的核型为:6m+1sm;M组的核型为:4m+1sm+2t。在四倍体、六倍体中,各染色体组保持着相对稳定。山羊草属S、D染色体组的核型与带型表明它们是小麦B、D染色体组的可能供体,C、M染色体组的一部分染色体带型亦与小麦B组带型相似。  相似文献   

10.
The short interspersed nuclear element (SINE), Au, was used to develop sequence-specific amplified polymorphism (S-SAP) markers for U- and M-genome chromosomes. The markers were localized using Triticum aestivum (wheat)-- Aegilops geniculata and wheat-- Aegilops biuncialis disomic chromosome addition lines. Thirty-seven markers distributed over 6 U and 6 M chromosomes were produced. A genetic diversity study carried out on 37 accessions from Ae. biuncialis, Ae. comosa, Ae. geniculata, and Ae. umbellulata suggested that Ae. biuncialis have arisen from its diploid ancestors more recently than Ae. geniculata. Several earlier studies indicated that the M genomes in polyploid Aegilops species had accumulated substantial rearrangements, whereas the U genomes remained essentially unmodified. However, this cannot be attributed to the preferential insertion of retroelements into the M genome chromosomes. Fourteen markers from a total of 8 chromosomes were sequenced; 3 markers were similar to known plant genes, 1 was derived from a long terminal repeat (LTR) retrotransposon, and 10 markers did not match to any known DNA sequences, suggesting that they were located in the highly variable intergenic regions.  相似文献   

11.
Common wheat ( Triticum aestivum L.) is an allohexaploid, consisting of three different genomes (Au, B and D ) which are genetically closely related. Genomic DNA of the three possible genome donors, T. urartu Thum., Aegilops speltoides Tausch and Ae. tauschii Coss.,were employed as probes to hybridize with the diploid genomic DNA digested by Eco RⅠand Hin dⅢ respectively. Both the hybridization strength and band patterns among the genomes would be good indicators of genome relationships. Combining distr ibution data of some repetitive DNA sequences cloned from T. urartu in the three genomes, the authors draw a conclusion that Au and D are more closely related to each other than either one to the B genome. Genomic in situ hybridization (GISH) of T. aestivum cv. Chinese Spring with genomic DNA probes of the three diploid progenitors respectively indicated that the three genomes could be discriminated clearly via GISH. The signals on the chromosomes of Au and D genomes were even. However, when Ae. speltoides DNA was used as probe, there were very strong cross hybridization and the signals condensed on some areas of the metaphasic chromosomes. In the interphase nucleus, the chromatin of B genome dispersed on the same region and the signals on the homologous chromosomes distributed symmetrically. Rich repetitive DNA sequences in B genome, especially the tandem repetitives, perhaps take an important role for the formation of the special hybridization pattern. The main difference between B and the other two genomes probably is in the repetitive DNA sequences.  相似文献   

12.
Diploid Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata are important wild gene sources for wheat. With the aim of assisting in alien gene transfer, this study provides gene-based conserved orthologous set (COS) markers for the U and M genome chromosomes. Out of the 140 markers tested on a series of wheat-Aegilops chromosome introgression lines and flow-sorted subgenomic chromosome fractions, 100 were assigned to Aegilops chromosomes and six and seven duplications were identified in the U and M genomes, respectively. The marker-specific EST sequences were BLAST-ed to Brachypodium and rice genomic sequences to investigate macrosyntenic relationships between the U and M genomes of Aegilops, wheat and the model species. Five syntenic regions of Brachypodium identified genome rearrangements differentiating the U genome from the M genome and from the D genome of wheat. All of them seem to have evolved at the diploid level and to have been modified differentially in the polyploid species Ae. biuncialis and Ae. geniculata. A certain level of wheat–Aegilops homology was detected for group 1, 2, 3 and 5 chromosomes, while a clearly rearranged structure was showed for the group 4, 6 and 7 Aegilops chromosomes relative to wheat. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species, wheat and model species will facilitate the targeted development of new markers specific for U and M genomic regions and will contribute to the understanding of molecular processes related to allopolyploidization.  相似文献   

13.
Flow cytometric sorting of individual chromosomes and chromosome‐based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow‐sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNALys and tRNAMet species, while the nonrepetitive assembly reveals tRNAAla species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome‐specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome‐level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.  相似文献   

14.
Four anonymous non-coding sequences were isolated from an Avena strigosa (A genome) genomic library and subsequently characterized. These sequences, designated As14, As121, As93 and As111, were 639, 730, 668, and 619 bp long respectively, and showed different patterns of distribution in diploid and polyploid Avena species. Southern hybridization showed that sequences with homology to sequences As14 and As121 were dispersed throughout the genome of diploid (A genome), tetraploid (AC genomes) and hexaploid (ACD genomes) Avena species but were absent in the C-genome diploid species. In contrast, sequences homologous to sequences As93 and As111 were found in diploid (A and C genomes), tetraploid (AC genomes) and hexaploid (ACD genomes) species. The chromosomal locations of the 4 sequences in hexaploid oat species were determined by fluorescent in situ hybridization and found to be distributed over the length of the 28 chromosomes (except in the telomeric regions) of the A and D genomes. Furthermore, 2 C-genome chromosome pairs with the As14 sequence, and 4 with As121, were discovered to beinvolved in intergenomic translocations. These chromosomes were identified as 1C, 2C, 4C and 16C by combining the As14 or As121 sequences with two ribosomal sequences and a C-genome-specific sequence as probes in fluorescence in situ hybridization. These sequences offer new tools for analyzing possible intergenomic translocations in other hexaploid oat species. Received: 8 April 1999 / Accepted: 30 July 1999  相似文献   

15.
Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.  相似文献   

16.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Avrora: Avrolata (AABBUU), Avrodes (AABBSS), and Avrotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Avrolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt 1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Avrodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Avrolata and in a line resulting from crosses with Avrotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

17.
An Aegilops ventricosa Tausch (2n = 28, DvDvNvNv) subtelocentric chromosome added to wheat (Triticum aestivum L.) in a disomic addition line was found to carry the genes for resistance Yr17, Lr37, Sr38, and Cre5 already transferred onto chromosome 2AS of the wheat line VPM1. Previous works demonstrated that this Ae. ventricosa chromosome is translocated with respect to the standard wheat genome. The present investigations showed that this chromosome pre-existed in Ae. ventricosa and contains only chromatin specific to the N genome. Using biochemical markers and suitable cytogenetic materials including the monoisosomic addition line for the translocated long arm (6NvL-2NvS), its structure was defined as being 6NvSdel.6NvL-2NvS. It consists of a segment of the short arm 2Nv, containing the resistance genes, attached to a group 6 chromosome lacking a distal part of its short arm. The 2 re arrangements could already be present in Aegilops uniaristata Vis. (2n = 14, NN), the source of the Nv genome of Ae. ventricosa.  相似文献   

18.
偏凸-柱穗山羊草双二倍体SDAU18的细胞分子遗传学鉴定   总被引:1,自引:0,他引:1  
综合利用细胞学、种子贮藏蛋白电泳、基因组原位杂交(GISH)和抗性接种鉴定相结合的方法.对偏凸-柱穗山羊草双二倍体SDAU18进行了鉴定。结果表明,SDAU18的根尖细胞染色体数目变异范围为52—56.在绝大多数根尖细胞染色体数目为56的SDAU18减数分裂中期I花粉母细胞fPMCMI)内可观察到28个二价体,在部分细胞中可观察到一定频率的单价体、三价体和四价体,平均染色体构型为2n=56=3.21I+19.78IIRing+6.50IIRod+0.01III+0.04IVRing+0.01IVRod;在SDAU18种子贮藏蛋白电泳图谱中,亲本偏凸山羊草和柱穗山羊草的多数特异带能够出现,SDAU18高分子量麦谷蛋白亚基图谱中既出现双亲的亚基谱带.也观察到新型亚基谱带:分别利用偏凸山羊草和柱穗山羊草基因组总DNA作探针.另一个亲本基因组总DNA作封阻。对SDAU18根尖细胞制片进行染色体原位杂交.在SDAU18的56条染色体中分别有14条出现绿色杂交信号:SDAU18是偏凸山羊草和柱穗山羊草的双二倍体,对小麦白粉病和条锈病均表现免疫,是一个在小麦品种遗传改良中具有重要利用价值的新型种质材料。  相似文献   

19.
E D Badaeva  B Friebe  B S Gill 《Génome》1996,39(2):293-306
Genome differentiation in 12 diploid Aegilops species was analyzed using in situ hybridization with the highly repetitive DNA sequences pSc119 and pAs1 and C-banding. Chromosomes of all these diploid Aegilops species hybridized with the pSc119 probe; however, the level of hybridization and labeling patterns differed among genomes. Only four species (Ae. squarrosa, Ae. comosa, Ae. heldreichii, and Ae. uniaristata) showed distinct hybridization with pAs1. The labeling patterns were species-specific and chromosome-specific. Differences in in situ hybridization (ISH) patterns, also observed by C-banding, exist between the karyotypes of Ae. comosa and Ae. heldreichii, suggesting that they are separate, although closely related, subspecies. The S genome of Ae. spelioides was most similar to the B and G genomes of polyploid wheats on the basis of both C-banding and ISH patterns, but was different from other species of section Sitopsis. These species had different C-banding patterns but they were similar to each other and to Ae. mutica in the distribution of pSc119 hybridization sites. Two types of labeling were detected in Ae. squarrosa with the pAs1 probe. The first resembled that of the D-genome chromosomes of bread wheat, Triticum aestivum L. em. Thell., while the second was similar to the D genome of some of the polyploid Aegilops species. Relationships among diploid Aegilops species and the possible mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, in situ hybridization, C-banding, evolution.  相似文献   

20.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号