首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of exopolymer complexes (EPCs), synthesized by the monocultures Desulfovibrio sp. 10, Bacillus subtilis 36, and Pseudomonas aeruginosa 27 and by microbial associations involved in the corrosion of metal surfaces has been studied. An analysis of the monosaccharide composition of carbohydrate components, as well as the fatty acid composition of the lipid part of EPCs, was carried out by gasliquid chromatography (GLC). It was found that bacteria in biofilms synthesized polymers; this process was dominated by glucose, while the growth of bacteria in a suspension was marked by a high rhamnose content. Hexouronic acids and hexosamine have been revealed as a part of B. subtilis 36 and P. aeruginosa 27 EPCs. Qualitative differences were revealed in the fatty acid composition of exopolymers in biofilms and in a bacterial suspension. It was shown that the transition to a biofilm form of growth led to an increase in the unsaturation degree of fatty acids in the exopolymers of associative cultures. The results can be used to develop methods to control microbial corrosion of metal surfaces.  相似文献   

2.
Fatty acid analysis and spoilage potential of biofilms from two breweries   总被引:2,自引:0,他引:2  
AIM: The microbial composition of biofilms from different locations of beer bottling plants were compared based on fatty acid profiles and correlated with the product-spoiling potential of these biofilms. METHODS AND RESULTS: The whole cell fatty acid profiles of 78 biofilms from bottling plants of two breweries were analysed. About half of the lipid profiles were dominated by oleic and linoleic acid, which refer to a high proportion of yeasts. In addition, more than half of all samples contained dimethylacetals indicating the presence of strictly anaerobic bacteria. Typical fatty acids for potentially beer-spoiling genera were detected in three biofilms. The majority of the biofilms contained no beer-spoiling organisms, as shown by inoculation experiments in beer. CONCLUSIONS: Biofilms from different locations of bottling plants were different with respect to their microbial composition. Potentially product-spoiling populations could be detected in a small number of samples. SIGNIFICANCE AND IMPACT OF THE STUDY: Biofilms on industrial plants can be characterized by a fast and cultivation-independent method with respect to overall microbial composition and presence of potentially product-spoiling micro-organisms.  相似文献   

3.
Role of iron-reducing bacteria in corrosion and protection of carbon steel   总被引:2,自引:0,他引:2  
The role of iron-reducing bacteria (IRB) in biocorrosion is under discussion. According to some reports, IRB are able to induce protection of carbon steel while others suggest an important enhancement of corrosion through the reduction and removal of passive films of ferric compounds on the metal surface. In this work, we review recent knowledge concerning microbial respiration, the ecology of IRB containing biofilms and the corrosive or protective effect of such biofilms on metal surfaces.  相似文献   

4.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.  相似文献   

5.
硫酸盐还原菌(sulfate-reducing bacteria,SRB)广泛分布于高温、高压及高盐的石油油藏中,在油藏硫循环中起主导作用。SRB能在油藏生物膜内生长,有微量低分子有机酸时利用硫酸盐为电子受体并将其还原成硫化氢。硫化氢会腐蚀管道,导致原油泄露等其他安全问题,每年造成的经济损失超过7 000亿元。本文首先总结了油藏生物膜内微生物菌群多样性,分析了生物膜内SRB及其相关菌群的协同腐蚀机理;然后讨论了高温油藏SRB介导的硫氮氢生物地球化学循环过程、胞外电子传递机制及其腐蚀作用,并通过几个高温油藏SRB生物膜内腐蚀的现场案例进一步阐明了SRB的腐蚀机制。在此基础上,提出了应对高温油藏生物膜内SRB腐蚀的生物纳米防治策略,这为高温油藏管道防腐提供了新思路。  相似文献   

6.
A comparative study of the adhesion of epiphytic bacteria and marine free-living, saprophytic, and pathogenic bacteria on seagrass leaves and abiotic surfaces was performed to prove the occurrence of true epiphytes of Zostera marina and to elucidate the bacterium-plant symbiotrophic relationships. It was shown that in the course of adhesion to the seagrass leaves of two taxonomically different bacteria, Cytophaga sp. KMM 3552 and Pseudoalteromonas citrea KMM 461, isolated from the seagrass surface, the number of viable cells increased 3-7-fold after 60 h of incubation, reaching 1.0-2.0 x 10(5) cells/cm2; however, in the case of adhesion of these bacteria to abiotic surfaces, such as glass or metal, virtually no viable cells were observed after 60 h of incubation. Such selectivity of cell adhesion was not observed in the case of three other bacterial species studied, viz., Vibrio alginolyticus KMM 3551, Bacillus subtilis KMM 430, and Pseudomonas aeruginosa KMM 433. The amount of viable cells of V. alginolyticus KMM 3551 adsorbed on glass and metal surfaces increased twofold after 40 h of incubation. The cells of saprophytic B. subtilis KMM 430 and pathogenic P. aeruginosa KMM 433 adsorbed on three studied substrata remained viable for 36 h and died by the 60th hour of incubation.  相似文献   

7.
AIMS: To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). METHODS AND RESULTS: Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. CONCLUSIONS: The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. SIGNIFICANCE AND IMPACT OF THE STUDY: A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.  相似文献   

8.
Well-studied bacteria such as Bacillus subtilis and Escherichia coli each have only a single pathway for synthesis of the unsaturated fatty acids required to make functional membrane lipids. In marked contrast, unsaturated fatty acid synthesis in Pseudomonas aeruginosa proceeds by three distinct pathways.  相似文献   

9.
The global economic burden of microbial corrosion of metals is enormous. Microbial corrosion of iron-containing metals is most extensive under anaerobic conditions. Microbes form biofilms on metal surfaces and can directly extract electrons derived from the oxidation of Fe0 to Fe2+ to support anaerobic respiration. H2 generated from abiotic Fe0 oxidation also serves as an electron donor for anaerobic respiratory microbes. Microbial metabolites accelerate this abiotic Fe0 oxidation. Traditional strategies for curbing microbial metal corrosion include cathodic protection, scrapping, a diversity of biocides, alloys that form protective layers or release toxic metal ions, and polymer coatings. However, these approaches are typically expensive and/or of limited applicability and not environmentally friendly. Biotechnology may provide more effective and sustainable solutions. Biocides produced with microbes can be less toxic to eukaryotes, expanding the environments for potential application. Microbially produced surfactants can diminish biofilm formation by corrosive microbes, as can quorum-sensing inhibitors. Amendments of phages or predatory bacteria have been successful in attacking corrosive microbes in laboratory studies. Poorly corrosive microbes can form biofilms and/or deposit extracellular polysaccharides and minerals that protect the metal surface from corrosive microbes and their metabolites. Nitrate amendments permit nitrate reducers to outcompete highly corrosive sulphate-reducing microbes, reducing corrosion. Investigation of all these more sustainable corrosion mitigation strategies is in its infancy. More study, especially under environmentally relevant conditions, including diverse microbial communities, is warranted.  相似文献   

10.
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on tissues and other surfaces. We characterized the interaction of purified human neutrophils with P. aeruginosa, growing in biofilms, with regard to morphology, oxygen consumption, phagocytosis, and degranulation. Scanning electron and confocal laser microscopy indicated that the neutrophils retained a round, unpolarized, unstimulated morphology when exposed to P. aeruginosa PAO1 biofilms. However, transmission electron microscopy demonstrated that neutrophils, although rounded on their dorsal side, were phagocytically active with moderate membrane rearrangement on their bacteria-adjacent surfaces. The settled neutrophils lacked pseudopodia, were impaired in motility, and were enveloped by a cloud of planktonic bacteria released from the biofilms. The oxygen consumption of the biofilm/neutrophil system increased 6- and 8-fold over that of the biofilm alone or unstimulated neutrophils in suspension, respectively. H(2)O(2) accumulation was transient, reaching a maximal measured value of 1 micro M. Following contact, stimulated degranulation was 20-40% (myeloperoxidase, beta-glucuronidase) and 40-80% (lactoferrin) of maximal when compared with formylmethionylleucylphenylalanine plus cytochalasin B stimulation. In summary, after neutrophils settle on P. aeruginosa biofilms, they become phagocytically engorged, partially degranulated, immobilized, and rounded. The settling also causes an increase in oxygen consumption of the system, apparently resulting from a combination of a bacterial respiration and escape response and the neutrophil respiratory burst but with little increase in the soluble concentration of H(2)O(2). Thus, host defense becomes compromised as biofilm bacteria escape while neutrophils remain immobilized with a diminished oxidative potential.  相似文献   

11.
Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 104 to 107 cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biolog™ plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms. Received: 4 April 1998 / Accepted: 7 July 1998  相似文献   

12.
A conductance-based surface disinfection test for food hygiene   总被引:7,自引:2,他引:5  
A surface disinfectant test method for food hygiene is described in which biocidal action was assessed using bacterial biofilms developed on stainless steel. The viability of control and surface-bound treated biofilms was assessed, using a Malthus microbiological growth analyser. The surface test was compared with the European Suspension Test on three bacteria, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus mirabilis , for 12 commonly used food surface disinfectants. In all cases the bacteria were shown to be up to 10 times more resistant to biocides, and in seven cases up to 100 times more resistant, when surface-attached. Disinfectants that performed well against bacteria in suspension did not necessarily perform well against the same bacteria when attached to surfaces.  相似文献   

13.
The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.  相似文献   

14.
Phototrophic biofilms are matrix-enclosed microbial communities, mainly driven by light energy. In this study, the successional changes in community composition of freshwater phototrophic biofilms growing on polycarbonate slides under different light intensities were investigated. The sequential changes in community composition during different developmental stages were examined by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments in conjugation with sequencing and phylogenetic analysis. Biofilm development was monitored with subsurface light sensors. The development of these biofilms was clearly light dependent. It was shown that under high light conditions the initial colonizers of the substratum predominantly consisted of green algae, whereas at low light intensities, heterotrophic bacteria were the initial colonizers. Cluster analysis of DGGE banding patterns revealed a clear correlation in the community structure with the developmental phases of the biofilms. At all light intensities, filamentous cyanobacteria affiliated to Microcoleus vaginatus became dominant as the biofilms matured. It was shown that the initial colonization phase of the phototrophic biofilms is shorter on polycarbonate surfaces precolonized by heterotrophic bacteria.  相似文献   

15.
从饲料用麦麸中分离出的12种细菌均能支持无菌家蝇Musca domestica L.幼虫在胰化酪蛋白大豆卵黄琼脂(TrypticaseSoy EggYolkAgar,TSEYA)培养基中完成整个生长发育过程。1)幼虫在接种香味类香味菌Myroidesodoratimimus的TSEYA培养基中生长时间最短,仅需97.61±1.14h;2)幼虫在接种醋酸钙不动杆菌Acinetobacter calcoaceticus的TSEYA培养基中的化蛹率可达到86.81%;3)从接种嗜水汽单胞菌Aeromonas hydrophila的TSEYA培养基中得到的蝇蛹重量最高,达到20.15±0.23mg/个;4)除铜绿假单胞菌Pseudomonasaeruginosa饲养的家蝇羽化率较低(60.87%)外,其余各种细菌饲养的羽化率在84.33%~97.47%之间。此外,枯草芽孢杆菌Bacillus subtilis、香味类香味菌、聚团肠杆菌Enterobacter agglomerans以及成团肠杆菌Pantoeaagglomerans可作为单一营养来源支持幼虫完成整个生长发育过程。对枯草芽孢杆菌、金黄色葡萄球菌Staphylococcusaurous、成团肠杆菌、大肠杆菌Escherichiacoli、奇异变形杆菌Proteusmirabilis以及香味类香味菌中各种营养成分进行分析,结果发现,6种细菌均能提供大量的维生素如(0.105~1.08g/kg)。在氨基酸方面,香味类香味菌和枯草芽孢杆菌中的10种昆虫必需氨基酸含量与总氨基酸含量之比(Essential amino acid/Totalaminoacid,EAA/TAA)最高,而金黄色葡萄球菌最低。这个比例与蛹重呈正相关(p=0.031)。在脂肪酸相对含量方面,金黄色葡萄球菌具有最高的饱和脂肪酸含量(76.38%),香味类香味菌含有56.79%的不饱和脂肪酸,而枯草芽孢杆菌则具有最高的支链脂肪酸含量(42.16%)。  相似文献   

16.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

17.
Microbial colonization of metals and alloys of industrial usage takes place through the formation of biofilms made of bacteria, extracellular polymeric substances (EPS) and mainly water. These biological deposits can drastically modify the corrosion behavior of structural metals and alloys enhancing localized alterations in the type and concentrations of ions, pH, and oxygen levels. However, biofilms also facilitate the formation of diffusional barriers to the exchange of chemical species from and towards the metal/solution interface. Problems due to biocorrosion and biofouling of industrial systems range from heavy microbiological contamination with consequent energy and efficiency losses to structural failures owing to corrosion.The use of appropriate monitoring strategies complemented with field and laboratory microbiological techniques is necessary to reach a proper understanding of the effects derived from microbiological activity and the role of biofilms in the corrosion reaction to later implement effective control and preventive countermeasures. It must be emphasized that this assessment should be made for each industrial system, considering its previous history, present operational conditions, physicochemical composition of the intake water and the number and identity of microbial contaminants.Cleaning procedures, most relevant biocides and other methods for prevention and control of biocorrosion like coatings, and cathodic protection are successively described. Updated information about monitoring strategies is also included in the final part of the paper.  相似文献   

18.
AIMS: In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. METHODS AND RESULTS: Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. CONCLUSIONS: Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.  相似文献   

19.
Native biofilms present on the adaxial surface of cotyledons of mung bean sprouts (Vigna radiata) were studied by use of scanning electron microscopy. Biofilms were abundant on the cotyledon surfaces and were comprised of rod-shaped bacteria, cocci-shaped bacteria, or yeasts, often with one type of microbe predominant. In contrast to our earlier study of biofilms on green sprouts (alfalfa, clover, broccoli, and sunflower), yeast and cocci were abundant on mung bean. Filamentous fungi were not observed. Sheet-like or fibrillar material (presumably composed of secreted microbial polysaccharides, proteins, lipids, and nucleic acids) fully or partially covered the biofilms. Biofilms up to 5 mm in length were observed, and some biofilms were comprised of more than just a monolayer of microbial cells. Native biofilms on sprout surfaces undoubtedly play an important role in the ecology of plant epiphytic microbes and may also afford protected sites for plant and human bacterial pathogens.  相似文献   

20.
Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号