首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual acuity and hyperacuity of 11- to 17-year-old secondary school students with normal vision were measured and compared. The estimations of hyperacuity and acuity were made using the vernier stimuli, Landolt Cs, and Tumbling Es. When test stimuli were located in the tables, visual acuity estimations measured using Landolt Cs were significantly higher by a factor of 1.1 than that measured using Tumbling Es. Visual hyperacuity was 1.25?C4.1 times higher than visual acuity. The estimations of visual hyperacuity were almost 2 times higher in 16-year-old than 13-year-old secondary school students, in contrast to the estimations of visual acuity that did not change with age. The binocular visual acuity estimations were 1.05 times higher than the monocular ones and did not depend on the age. The ratio of binocular visual hyperacuity to monocular visual hyperacuity in 13-year-old secondary school students was 1.9, whereas, in senior secondary school students, it was 1.2. The contribution of binocular vision to the development of the mechanisms of visual acuity and hyperacuity in ontogenesis and the differences between the mechanisms of visual acuity and hyperacuity are discussed.  相似文献   

2.
Visual acuity (VA) in 292 schoolchildren aged 8–17 years was measured using Landolt Cs, E letters, and rectangular gratings. With the forced choice procedure, the VA measured with Landolt Cs was 1.4 times higher than with other targets, suggesting analysis of the whole image rather than its gaps by the visual system. In addition, the effect of surrounding images on VA estimates was studied with Landolt Cs, E letters, and gratings surrounded by bars, E letters, and gratings, respectively. A crowding effect, i.e., a worse perception of test objects surrounded by other images, was revealed. However, the perception of Landolt Cs, E letters, and gratings showed age-dependent differences. The separation between the stimulus and surrounding images at which the perception of gratings and other images worsened decreased with age increasing up to 16–17 and 12 years, respectively. The age-related differences were explained by the immaturity of selective-attention mechanisms.  相似文献   

3.
Using monocular and dynamic random dot correlogram (DRDC) stimuli, sequential visual evoked potentials changes were demonstrated in 2 patients following cerebral blindness. The recovery of binocular vision was delayed in comparison to the recovery of monocular vision. The results are not due to simple acuity impairment or convergence deficiency, and thus provide evidence for the vulnerability of postsynaptic cortical mechanisms of human binocular vision.  相似文献   

4.
We view the world with two eyes and yet are typically only aware of a single, coherent image. Arguably the simplest explanation for this is that the visual system unites the two monocular stimuli into a common stream that eventually leads to a single coherent sensation. However, this notion is inconsistent with the well-known phenomenon of rivalry; when physically different stimuli project to the same retinal location, the ensuing perception alternates between the two monocular views in space and time. Although fundamental for understanding the principles of binocular vision and visual awareness, the mechanisms under-lying binocular rivalry remain controversial. Specifically, there is uncertainty about what determines whether monocular images undergo fusion or rivalry. By taking advantage of the perceptual phenomenon of color contrast, we show that physically identical monocular stimuli tend to rival-not fuse-when they signify different objects at the same location in visual space. Conversely, when physically different monocular stimuli are likely to represent the same object at the same location in space, fusion is more likely to result. The data suggest that what competes for visual awareness in the two eyes is not the physical similarity between images but the similarity in their perceptual/empirical meaning.  相似文献   

5.
Stimuli with small binocular disparities are seen as single, despite their differing visual directions for the two eyes. Such stimuli also yield stereopsis, but stereopsis and single vision can be dissociated. The occurrence of binocular single vision depends not only on the disparities of individual stimulus elements, but also on the geometrical relation of different parts of the pattern presented to each eye. A pair of vertical bars with opposite binocular disparities is seen as single if the pair is moderately widely spaced but not if it is narrow. Vertical alignment and identity in length of such bars also increase the occurrence of double vision. It is argued that these effects reflect the extraction of features of the monocular patterns, with these detected monocular features determining the binocular percept. Single and double vision of bars differing in orientation can be similarly analysed. The occurrence of relatively elaborate processing of monocular signals does not exclude the possibility that binocular interaction can occur between signals that have not been so processed. Multiple sites or types of binocular interaction are likely.  相似文献   

6.
It has been argued that visual perception and the visual control of action depend upon functionally distinct and anatomically separable brain systems. Electrophysiological evidence indicates that binocular vision may be particularly important for the visuomotor processing within the posterior parietal cortex, and neuropsychological and psychophysical studies confirm that binocular vision is crucial for the accurate planning and control of prehension movements. An unresolved issue concerns the consequences for visuomotor processing of removing binocular vision. By one account, monocular viewing leads to reliance upon pictorial visual cues to calibrate grasping and results in disruption to normal size-constancy mechanisms. This proposal is based on the finding that maximum grip apertures are reduced with monocular vision. By a second account, monocular viewing results in the loss of binocular visual cues and leads to strategic changes in visuomotor processing by way of altered safety margins. This proposal is based on the finding that maximum grip apertures are increased with monocular vision. We measured both grip aperture and grip force during prehension movements executed with binocular and monocular viewing. We demonstrate that each of the above accounts may be correct and can be observed within the same task. Specifically, we show that, while grip apertures increase with monocular vision, consistent with altered visuomotor safety margins, maximum grip force is nevertheless reduced, consistent with a misperception of object size. These results are related to differences in visual processing required for calibrating grip aperture and grip force during reaching.  相似文献   

7.
Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision.  相似文献   

8.
双眼和单眼视觉剥夺猫外膝体细胞的图形适应   总被引:1,自引:0,他引:1  
Wang W  Shou TD 《生理学报》2000,52(3):230-234
为测定丘脑外膝体细胞的图形适应是否依赖于早期视觉经验,在细胞外记录了双眼和单眼缝合的猫外膝体中断细胞对手工时间运动光栅刺激的反应。在双眼剥夺猫,占68%的记录到的细胞在30s内反应下降到稳定值,其平均反应值下降33%,适应程度较正常猫显著。在单眼剥夺猫,记录到的剥夺眼驱动的和非剥夺眼驱动的细胞中,分别有占53%和44%的细胞显示图形适应,两者差别不大。研究表明,早期视剥夺能增强或保持图形适应,提示  相似文献   

9.
Visual evoked responses (VERs) to checkboard-reversal photic stimuli were recorded in 30 healthy experimental subjects with a mean age of 32 years. In 20 cases the stimuli were presented monocularly and in 10 cases binocularly. The estimated mean signal-to-noise ratio (SNR) of the individual VERs was found to be 0.245 +/- 0.092 for monocular stimulation and 0.444 +/- 0.23 for binocular stimulation. The power-based SNR of the averaged VERs was 24.5 and 44.4 respectively. The SNR was raised the most effectively by a new selective averaging variant applied after latency correction of the individual VERs; in the case of monocular stimulation the SNR rose to a mean 58.94 and in binocular stimulation to a mean 87.42. The mean proportion of discarded single VERs was 24%.  相似文献   

10.
In our experiment, alternating pulse stimuli of both low and high intensity are used to study the pupil reflex to light. When applied monocularly, high intensity stimulation normally results in a sustained contraction; when alternated between the two eyes, it is found to produce small transient responses similar to those obtained with low intensity monocular stimulation. In order to study the mechanisms regulating these binocular responses, a model of the pupillary light reflex is constructed. It includes parallel AC and DC pathways for processing the light stimulus to produce motor signals to the iris muscles, nonlinear parameter control of pathway gains dependent upon internal operating level, binocular summation of DC pathway signals to produce that operating level, equal motor responses of both pupils, and iris neuromuscular delays and lags. The model is found to simulate the experimental data. It shows the binocular transient responses to be due to the canceling by summation of the symmetric DC pathway responses to alternating stimuli, thus allowing the AC pathway signals to become manifest. Therefore the dilatory portion of the transient responses is shown to be due to the lead-lag operator in the AC pathway and not to the off-dilatation elicited by removal of the light stimulus from the eye. Finally the results of our study are used to discuss the Marcus Gunn pupillary sign, a clinical test utilizing this binocular alternating pulse stimulation for detecting unilateral afferent defects.  相似文献   

11.
Visual fusion is the process in which differing but compatible binocular information is transformed into a unified percept. Even though this is at the basis of binocular vision, the underlying neural processes are, as yet, poorly understood. In our study we therefore aimed to investigate neural correlates of visual fusion. To this end, we presented binocularly compatible, fusible (BF), and incompatible, rivaling (BR) stimuli, as well as an intermediate stimulus type containing both binocularly fusible and monocular, incompatible elements (BFR). Comparing BFR stimuli with BF and BR stimuli, respectively, we were able to disentangle brain responses associated with either visual fusion or rivalry. By means of functional magnetic resonance imaging, we measured brain responses to these stimulus classes in the visual cortex, and investigated them in detail at various retinal eccentricities. Compared with BF stimuli, the response to BFR stimuli was elevated in visual cortical areas V1 and V2, but not in V3 and V4 – implying that the response to monocular stimulus features decreased from V1 to V4. Compared to BR stimuli, the response to BFR stimuli decreased with increasing eccentricity, specifically within V3 and V4. Taken together, it seems that although the processing of exclusively monocular information decreases from V1 to V4, the processing of binocularly fused information increases from earlier to later visual areas. Our findings suggest the presence of an inhibitory neural mechanism which, depending on the presence of fusion, acts differently on the processing of monocular information.  相似文献   

12.
New knowledge concerning the internal structure and response properties of the receptive fields of striate cells calls for a fresh appraisal of their binocular interactions in the interest of a better understanding of the neural mechanisms underlying binocular depth discrimination. Binocular position-disparity response profiles were recorded from 71 simple and B-cells in response to moving light and dark bars. Predominantly excitatory (PE) cells (N = 48) had disparity response profiles that were spatially closely similar to their respective monocular responses. In addition, the centrally located excitatory subregions were flanked on one or both sides by non-specific inhibitory regions. PE cells with a preferred stimulus orientation within 30 degrees of the vertical (N = 17) showed binocular facilitations with maximal values that were always more than twice (mean 3.3) the sum of the two monocular responses to the same stimuli and generally greater than the facilitations shown by cells with orientations more than 30 degrees from the vertical (N = 29; mean 2.2 times the sum of the respective monocular responses). The strength of the binocular facilitation depended on the stimulus contrast, the facilitation decreasing with increasing contrast. The receptive-field disparity distribution of the 31 PE cells capable of making significant horizontal disparity discriminations has standard deviations of 0.37 degrees and 0.40 degrees, respectively. Predominantly inhibitory cells (PI) (N = 23) showed two basic types of disparity response profile: symmetric (N = 17) and asymmetric (N = 6). Uncertainty regarding the precise location of the binocular fixation point in the anaesthetized and paralysed preparation made it difficult to categorize PI cells adequately.  相似文献   

13.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

14.
Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.  相似文献   

15.
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.  相似文献   

16.
Binocular vision is traditionally treated as two processes: the fusion of similar images, and the interocular suppression of dissimilar images (e.g. binocular rivalry). Recent work has demonstrated that interocular suppression is phase-insensitive, whereas binocular summation occurs only when stimuli are in phase. But how do these processes affect our perception of binocular contrast? We measured perceived contrast using a matching paradigm for a wide range of interocular phase offsets (0–180°) and matching contrasts (2–32%). Our results revealed a complex interaction between contrast and interocular phase. At low contrasts, perceived contrast reduced monotonically with increasing phase offset, by up to a factor of 1.6. At higher contrasts the pattern was non-monotonic: perceived contrast was veridical for in-phase and antiphase conditions, and monocular presentation, but increased a little at intermediate phase angles. These findings challenge a recent model in which contrast perception is phase-invariant. The results were predicted by a binocular contrast gain control model. The model involves monocular gain controls with interocular suppression from positive and negative phase channels, followed by summation across eyes and then across space. Importantly, this model—applied to conditions with vertical disparity—has only a single (zero) disparity channel and embodies both fusion and suppression processes within a single framework.  相似文献   

17.
Neurons in the macaque Anterior Intraparietal area (AIP) encode depth structure in random-dot stimuli defined by gradients of binocular disparity, but the importance of binocular disparity in real-world objects for AIP neurons is unknown. We investigated the effect of binocular disparity on the responses of AIP neurons to images of real-world objects during passive fixation. We presented stereoscopic images of natural and man-made objects in which the disparity information was congruent or incongruent with disparity gradients present in the real-world objects, and images of the same objects where such gradients were absent. Although more than half of the AIP neurons were significantly affected by binocular disparity, the great majority of AIP neurons remained image selective even in the absence of binocular disparity. AIP neurons tended to prefer stimuli in which the depth information derived from binocular disparity was congruent with the depth information signaled by monocular depth cues, indicating that these monocular depth cues have an influence upon AIP neurons. Finally, in contrast to neurons in the inferior temporal cortex, AIP neurons do not represent images of objects in terms of categories such as animate-inanimate, but utilize representations based upon simple shape features including aspect ratio.  相似文献   

18.
The visually guided behaviour in the Morris water maze (using distal extramaze cues for navigation to a small invisible platform in a large pool of opaque water) was analyzed by comparing monocular and binocular performance of hooded rats in various versions of this task. A dish-shaped metal foil occluder connected to a carrier fixed to the frontal bones was used to restrict vision to one eye. Acquisition of the water maze task with one eye occluded proceeded at the same rate as with both eyes open. There was no difference in the transfer from binocular to monocular and from monocular to binocular viewing. Retrieval of the monocularly acquired habit was equally efficient with the same as with the contralateral eye. Similar results were obtained in naive and overtrained rats. In the working memory version of the task, rats received a single acquisition trial with a new position of the escape platform followed after a delay of 2, 5, 20 or 40 min by a single retrieval trial. Performance deteriorated with increasing delay faster under interocular transfer conditions then when the same eye was used in both trials. No signs of ocular dominance were found in this task. It is concluded that successful place learning is little affected by monocular or binocular viewing conditions, but that monocular impairment becomes apparent when the difficulty of the task is increased.  相似文献   

19.
The purpose of this study was to obtain age-specific normative data for visual acuity (VA) in sevenyear- old children. The sample included a total of 127 healthy children (mean age 7.53 ± 0.025 years) without ophthalmic disorders. Monocular and binocular VAs were determined to the threshold level at two distances, 5 m and 0.5 m, using eye charts with eight intermediate levels between 1.0 and 2.4 (in the decimal notation system) with widely spaced tumbling Snellen’s E optotypes randomly distributed in four orientations. Since the optotypes were located in lines at intervals that were twice as large as the size of the optotype itself, they could be considered as single stimuli. The normal monocular and binocular VAs were 1.279 ± 0.025 and 1.491 ± 0.028 at 5 m and 1.256 ± 0.024 and 1.388 ± 0.025 m at 0.5 m, respectively (mean ± standard error of mean). Interocular differences in VA are also discussed. Our findings show that the normal VA in seven-yearold children is higher than the clinically accepted norm of 1.0; therefore, VA measurement to the threshold level is necessary for earlier visual disorders to be detected.  相似文献   

20.
Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position desparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号