首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immergence and dissemination of multidrug-resistant strains of Staphylococcus aureus in recent years have expedited the research on the discovery of novel anti-staphylococcal agents promptly. Bacteriophages have long been showing tremendous potentialities in curing the infections caused by various pathogenic bacteria including S. aureus. Thus far, only a few virulent bacteriophages, which do not carry any toxin-encoding gene but are capable of eradicating staphylococcal infections, were reported. Based on the codon usage analysis of sixteen S. aureus phages, previously three phages were suggested to be useful as the anti-staphylococcal agents. To search for additional S. aureus phages suitable for phage therapy, relative synonymous codon usage bias has been investigated in the protein-coding genes of forty new staphylococcal phages. All phages appeared to carry A and T ending codons. Several factors such as mutational pressure, translational selection and gene length seemed to be responsible for the codon usage variation in the phages. Codon usage indeed varied phage to phage. Of the phages, phages G1, Twort, 66 and Sap-2 may be extremely lytic in nature as majority of their genes possess high translational efficiency, indicating that these phages may be employed in curing staphylococcal infections.  相似文献   

2.
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A3, T3, G3, C3, GC3) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC3 plot grouped majority of the analyzed genes on or just below the left side of the expected GC3 curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.  相似文献   

3.
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.  相似文献   

4.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

5.
We have used a polymorphism dataset on introns and coding sequences of X-linked loci in Drosophila americana to estimate the strength of selection on codon usage and/or biased gene conversion (BGC), taking into account a recent population expansion detected by a maximum-likelihood method. Drosophila americana was previously thought to have a stable demographic history, so that this evidence for a recent population expansion means that previous estimates of selection need revision. There was evidence for natural selection or BGC favouring GC over AT variants in introns, which is stronger for GC-rich than GC-poor introns. By comparing introns and coding sequences, we found evidence for selection on codon usage bias, which is much stronger than the forces acting on GC versus AT basepairs in introns.  相似文献   

6.

Background

The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.

Results

A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).

Conclusions

The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mitogen activated protein kinase (MAPK) genes provide resistance to various biotic and abiotic stresses. Codon usage profiling of the genes reveals the characteristic features of the genes like nucleotide composition, gene expressivity, optimal codons etc. The present study is a comparative analysis of codon usage patterns for different MAPK genes in three organisms, viz. Arabidopsis thaliana, Glycine max (soybean) and Oryza sativa (rice). The study has revealed a high AT content in MAPK genes of Arabidopsis and soybean whereas in rice a balanced AT-GC content at the third synonymous position of codon. The genes show a low bias in codon usage profile as reflected in the higher values (50.83 to 56.55) of effective number of codons (Nc). The prediction of gene expression profile in the MAPK genes revealed that these genes might be under the selective pressure of translational optimization as reflected in the low codon adaptation index (CAI) values ranging from 0.147 to 0.208.  相似文献   

8.
The homologue of the phosphoprotein PII phosphatase PphA from Thermosynechococcus elongatus, termed tPphA, was identified and its structure was resolved in two different space groups, C2221 and P41212, at a resolution of 1.28 and 3.05 Å, respectively. tPphA belongs to a large and widely distributed subfamily of Mg2+/Mn2+-dependent phosphatases of the PPM superfamily characterized by the lack of catalytic and regulatory domains. The core structure of tPphA shows a high degree of similarity to the two PPM structures identified so far. In contrast to human PP2C, but similar to Mycobacterium tuberculosis phosphatase PstP, the catalytic centre exhibits a third metal ion in addition to the dinuclear metal centre universally conserved in all PPM members. The fact that the third metal is only liganded by amino acids, which are universally conserved in all PPM members, implies that the third metal could be general for all members of this family. As a specific feature of tPphA, a flexible subdomain, previously recognized as a flap domain, could be revealed. Comparison of different structural isomers of tPphA as well as site-specific mutagenesis implied that the flap domain is involved in substrate binding and catalytic activity. The structural arrangement of the flap domain was accompanied by a large side-chain movement of an Arg residue (Arg169) at the basis of the flap. Mutation of this residue strongly impaired protein stability as well as catalytic activity, emphasizing the importance of this amino acid for the regional polysterism of the flap subdomain and confirming the assumption that flap domain flexibility is involved in catalysis.  相似文献   

9.
10.
Ishikita H  Knapp EW 《FEBS letters》2005,579(14):3190-3194
Cytochrome c550 (cyt c550) from photosystem II (PSII) exists in the PSII-bound form but can be released from PSII by treatment with divalent cations or Tris, yielding the isolated form. We calculated heme redox potentials (Em) based on the crystal structures of cyt c550 by solving the Poisson-Boltzmann equation. In the isolated form, the calculated Em are -240 mV at pH 6.0 and -352 mV at pH 9.0. This pH-dependence is predominantly due to deprotonation of the heme-propionic group near Asn-49. In the PSII-bound form, the calculated E(m) was up-shifted by 160 mV versus the isolated form due to a conformational change of protein backbone, yielding Em=-84 mV.  相似文献   

11.
Long stretches of “rare” codons are known to severely inhibit the efficiency of translation. Understanding the distribution of such rare codons is of critical importance in improving the efficiency of heterologous gene expression systems. Accurate estimates of codon usage take the abundance of each protein into consideration. In this paper, we analyze the correlation between approximate measures of codon usage and the availability of tRNA at various growth rates in E coli. We show that the computationally derived estimates of tRNA isoacceptor concentration enable the finding of poorly translated codons.  相似文献   

12.
PS II-H is a small hydrophobic protein that is universally present in the PS II core complex of cyanobacteria and plants. The role of PS II-H was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The psbH disruptant could grow photoautotrophically; however, its growth was much slower than that of the wild type cell. Chromatography enabled the isolation of active oxygen-evolving PS II complexes from both the mutant and the wild type. The mutant yielded a relatively large amount of inactive PS II complex that lacked the following extrinsic proteins: the 33-kDa protein, the 12-kDa protein, and cytochrome c 550 . There were differences between the psbH disruptant and the wild type in terms of the oxygen evolution activities of the cells, thylakoids, and PS II complexes. At high concentrations of 2,6-DCBQ, the activity was much lower in the mutant than in the wild type. Gel filtration chromatography of the PS II complexes showed that both active and inactive PS II complexes isolated from the mutant were mostly in the monomeric form, while the active PS II complex from the wild type was in the dimeric form. The polypeptide composition of both active and inactive PS II complexes from the mutant showed the absence of another small polypeptide, PS II-X. These results suggest that the PS II-H protein is essential for stable assembly of native dimeric PS II complex containing PS II-X.  相似文献   

13.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

14.
Liu Q 《Bio Systems》2006,85(2):99-106
The main factors shaping codon usage bias in the Deinococcus radiodurans genome were reported. Correspondence analysis (COA) was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with gene expression level assessed by the "Codon Adaptation Index" (CAI) values, a result that was confirmed by the distribution of genes along the first axis. The results of correlation analysis, variance analysis and neutrality plot indicated that gene nucleotide composition was clearly contributed to codon bias. CDS length was also key factor in dictating codon usage variation. A general tendency of more biased codon usage of genes with longer CDS length to higher expression level was found. Further, the hydrophobicity of each protein also played a role in shaping codon usage in this organism, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity values (r=-0.100, P<0.01). In summary, gene expression level played a crucial role, nucleotide mutational bias, CDS length and the hydrophobicity of each protein just in a minor way in shaping the codon usage pattern of D. radiodurans. Notably, 19 codons firstly defined as "optimal codons" may provide useful clues for molecular genetic engineering and evolutionary studying.  相似文献   

15.
Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. Codon usage biases of all protein-coding genes (length greater than or equal to 300 bp) from the complete genome of B. pseudomallei K96243 have been analyzed. As B. pseudomallei is a GC-rich organism (68.5%), overall codon usage data analysis indicates that indeed codons ending in G and/or C are predominant in this organism. But multivariate statistical analysis indicates that there is a single major trend in the codon usage variation among the genes in this organism, which has a strong positively correlation with the expressivities of the genes. The majority of the lowly expressed genes are scattered towards the negative end of the major axis whereas the highly expressed genes are clustered towards the positive end. At the same time, from the results that there were two significant correlations between axis 1 coordinates and the GC, GC3s content at silent sites of each sequence, and clearly significant negatively correlations between the ‘Effective Number of Codons’ values and GC, GC3s content, we inferred that codon usage bias was affected by gene nucleotide composition also. In addition, some other factors such as the lengths of the genes as well as the hydrophobicity of genes also influence the codon usage variation among the genes in this organism in a minor way. At the same time, notably, 21 codons have been defined as ‘optimal codons’ of the B. pseudomallei. In summary, our work have provided a basic understanding of the mechanisms for codon usage bias and some more useful information for improving the expression of target genes in vivo and in vitro. Sheng Zhao and Qin Zhang contributed equally to this work.  相似文献   

16.
Basak S  Roy S  Ghosh TC 《FEBS letters》2007,581(30):5825-5830
Synonymous codon usage analysis between thermophilic and mesophilic prokaryotes has gained wide attention in recent years. Although it is known that thermophilic and mesophilic prokaryotes use different subset of synonymous codons, no reason for this difference is known so far. In the present communication, by analyzing a large number of thermophilic and mesophilic prokaryotes, we provide evidence that bias in the selection of synonymous codons between thermophilic and mesophilic prokaryotes is related to differential folding pattern of mRNA secondary structures. Moreover, we observe that error-minimizing property has significant influence in differentiating the synonymous codon usage between thermophilic and mesophilic prokaryotes. Biological implications of these results are discussed.  相似文献   

17.
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.  相似文献   

18.
Cytochrome c(550) (cyt c(550)) is a component of photosystem II (PSII) from cyanobacteria, red algae, and some other eukaryotic algae. Its physiological role remains unclear. In the present work, measurements of the midpoint redox potential (E(m)) were performed using intact PSII core complexes preparations from a histidine-tagged PSII mutant strain of the thermophilic cyanobacterium Thermosynechococcus (T.) elongatus. When redox titrations were done in the absence of redox mediators, an E(m) value of +200 mV was obtained for cyt c(550). This value is ~300 mV more positive than that previously measured in the presence of mediators (E(m) = -80 mV). The shift from the high potential form (E(m) = +200 mV) to the low potential form (E(m) = -80 mV) of cyt c(550) is attributed to conformational changes, triggered by the reduction of a component of PSII that is sequestered and out of equilibrium with the medium, most likely the Mn(4)Ca cluster. This reduction can occur when reduced low potential redox mediators are present or under highly reducing conditions even in the absence of mediators. Based on these observations, it is suggested that the E(m) of +200 mV obtained without mediators could be the physiological redox potential of the cyt c(550) in PSII. This value opens the possibility of a redox function for cyt c(550) in PSII.  相似文献   

19.
Kashani GM  Sari A 《ZooKeys》2012,(176):13-22
In the present study, Hemilepistus elongatus Budde-Lund, 1885 is reported from Iran for the first time, redescribed and its diagnostic characters are figured. This species reveals a high variability in morphological characters. The division of the species at the subspecific level can not be supported anymore. This species differs from other species of the genus by the unique shape of male pleopod-endopodite I.  相似文献   

20.
Marine unicellular cyanobacteria, represented by Synechococcus and Prochlorococcus, dominate the total phytoplankton biomass and production in oligotrophic ocean. In this study, we employed comparative genomics approaches to extensively investigate synonymous codon usage bias and evolutionary rates in a large number of closely related species of marine unicellular cyanobacteria. Although these two groups of marine cyanobacteria have a close phylogenetic relationship, we find that they are highly divergent not only in codon usage patterns but also in the driving forces behind the diversification. It is revealed that in Prochlorococcus, mutation and genome compositional constraints are the main forces contributing to codon usage bias, whereas in Synechococcus, translational selection. In addition, nucleotide substitution rate analysis indicates that they are not evolving at a constant rate after the divergence and that the average dN/dS values of core genes in Synechococcus are significantly higher than those in Prochlorococcus. Our evolutionary genomic analysis provides the first insight into codon usage, evolutionary genetic mechanisms and environmental adaptation of Synechococcus and Prochlorococcus after divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号