首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
From affiliative behaviors to romantic feelings: a role of nanopeptides   总被引:1,自引:0,他引:1  
Debiec J 《FEBS letters》2007,581(14):2580-2586
Love is one of the most desired experiences. The quest for understanding human bonds, especially love, was traditionally a domain of the humanities. Recent developments in biological sciences yield new insights into the mechanisms underlying the formation and maintenance of human relationships. Animal models of reproductive behaviors, mother-infant attachment and pair bonding complemented by human studies reveal neuroendocrine foundations of prosocial behaviors and emotions. Amongst various identified neurotransmitters and modulators, which control affiliative behaviors, the particular role of nanopeptides has been indicated. New studies suggest that these chemicals are not only involved in regulating bonding processes in animals but also contribute to generating positive social attitudes and feelings in humans.  相似文献   

2.
The signaling pathway of G protein‐coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1bR) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β‐arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1bR‐mediated MAP kinase pathway. Using MEF cells Knocked‐out for β‐arrestins 1 and 2, we demonstrated that both β‐arrestins 1 and 2 play a fundamental role in internalization and recycling of V1bR with a rapid and transient V1bR‐β‐arrestin interaction in contrast to a slow and long‐lasting β‐arrestin recruitment of the V2 vasopressin receptor subtype (V2R). Using V1bR‐V2R chimeras and V1bR C‐terminus truncations, we demonstrated the critical role of the V1bR C‐terminus in its interaction with β‐arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation‐independent manner. In parallel, V1bR MAP kinase activation was dependent on arrestins and Src‐kinase but independent on G proteins. Interestingly, Src interacted with hV1bR at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1bR involving both arrestins and Src kinase family.   相似文献   

3.
We report the solid‐phase synthesis and some pharmacological properties of 23 new analogs of arginine vasopressin (AVP) which have the Phe3 residue replaced by a broad variety of amino acids. Peptides 1–9 have at position 3: (1) the mixed aromatic/aliphatic amino acid thienylalanine (Thi) and the aliphatic amino acids; (2) cyclohexylalanine (Cha); (3) norleucine (Nle); (4) Leu; (5) norvaline (Nva); (6) Val; (7) alpha‐aminobutyric acid (Abu); (8) Ala; (9) Gly. Peptides 10–23 have at position 3: the aromatic amino acids, (10) homophenylalanine (Hphe); (11) Tyr; (12) Trp; (13) 2‐naphthylalanine (2‐Nal); the conformationally‐restricted amino acids (14) Pro; (15) 2‐aminotetraline‐2‐carboxylic acid (Atc); the polar amino acids (16) Ser; (17) Thr; (18) Gln; and the charged amino acids (19) Asp; (20) Glu; (21) Arg; (22) Lys; (23) Orn. All 23 new peptides were evaluated for agonistic and, where appropriate, antagonistic activities in in vivo antidiuretic (V2‐receptor) and vasopressor (V1a‐receptor) assays and in in vitro (no Mg2+) oxytocic assays. The corresponding potencies (units/mg) in these assays for AVP are: 323±16; 369±6 and 13.9±0.5. Peptides 1–9 exhibit the following potencies (units/mg) in these three assays: (1) 379±14; 360±9; 36.2±1.9; (2) 294±21; 73.4±2.7; 0.33±0.02; (3) 249±28; 84.6±4.3; 4.72±0.16; (4) 229±19; 21.4±0.6; 2.1±0.2; (5) 134±5; 31.2±0.9; 28.4±0.2; (6) 114±9; 45.3±2.3; 11.3±1.6; (7) 86.7±2.5; 4.29±0.13; 0.45±0.03; (8) 15.5±1.5; 0.16±0.01; ∼0.02; (9) 3.76±0.03; <0.02; in vitro oxytocic agonism was not detected. These data show that the aliphatic amino acids Cha, Nle, Leu, Nva and Val are well‐tolerated at position 3 in AVP with retention of surprisingly high levels of antidiuretic activity. Peptides 2–9 exhibit significant gains in both antidiuretic/vasopressor (A/P) and antidiuretic/oxytocic (A/O) selectivities relative to AVP. [Thi3]AVP appears to be a more potent antidiuretic and oxytocic agonist than AVP and is equipotent with AVP as a vasopressor agonist. The antidiuretic potencies of peptides 10–23 exhibit drastic losses relative to AVP. They range from a low of 0.018±0.001 units/mg for the Lys3 analog (peptide 22) to a high of 24.6±4.6 units/mg for the Hphe3 analog (peptide 10). Their vasopressor potencies are also drastically reduced. These range from a low of <0.002 units/mg for peptide 22 to a high of 8.99±0.44 units/mg for the Atc3 analog (peptide 15). Peptides 10–23 exhibit negligible or undetectable in vitro oxytocic agonism. The findings on peptides 10–23 show that position 3 in AVP is highly intolerant of changes with aromatic, conformationally‐restricted, polar and charged amino acids. Furthermore, these findings are in striking contrast to our recent discovery that position 3 in the potent V2/V1a/OT antagonist d(CH2)5d ‐Tyr(Et)2VAVP tolerates a broad latitude of structural change at position 3 with many of the same amino acids, to give excellent retention of antagonistic potencies. The data on peptides 1–4 offer promising clues to the design of more potent and selective AVP V2 agonists. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on a host of integrated systems including reproductive physiology, sexual behavior, stress responses, immune function, cognition, and neural protection. Understanding the specific contributions of androgens and estrogens in neurons that mediate these important biological processes is central to the study of neuroendocrinology. Of particular interest in recent years has been the biological role of androgen metabolites. The goal of this review is to highlight recent data delineating the specific brain targets for the dihydrotestosterone metabolite, 5alpha-androstane, 3beta,17beta-diol (3beta-Diol). Studies using both in vitro and in vivo approaches provide compelling evidence that 3beta-Diol is an important modulator of the stress response mediated by the hypothalmo-pituitary-adrenal axis. Furthermore, the actions of 3beta-Diol are mediated by estrogen receptors, and not androgen receptors, often through a canonical estrogen response element in the promoter of a given target gene. These novel findings compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed at elucidating the specific effects of androgen receptor signaling pathways.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号