首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interfacial proteins function in unique heterogeneous solvent environments, such as water–oil interfaces. One important example is microbial lipase, which is activated in an oil‐water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all‐atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed‐gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open‐gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α‐helical, as we previously observed in studies that address water–oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.  相似文献   

2.
A special class of proteins adopts an inactive conformation in aqueous solution and activates at an interface (such as the surface of lipid droplet) by switching their conformations. Lipase, an essential enzyme for breaking down lipids, serves as a model system for studying such interfacial proteins. The underlying conformational switch of lipase induced by solvent condition is achieved through changing the status of the gated substrate‐access channel. Interestingly, a lipase was also reported to exhibit pressure activation, which indicates it is drastically active at high hydrostatic pressure. To unravel the molecular mechanism of this unusual phenomenon, we examined the structural changes induced by high hydrostatic pressures (up to 1500 MPa) using molecular dynamics simulations. By monitoring the width of the access channel, we found that the protein undergoes a conformational transition and opens the access channel at high pressures (>100 MPa). Particularly, a disordered amphiphilic α5 region of the protein becomes ordered at high pressure. This positive correlation between the channel opening and α5 ordering is consistent with the early findings of the gating motion in the presence of a water–oil interface. Statistical analysis of the ensemble of conformations also reveals the essential collective motions of the protein and how these motions contribute to gating. Arguments are presented as to why heightened sensitivity to high‐pressure perturbation can be a general feature of switchable interfacial proteins. Further mutations are also suggested to validate our observations. Proteins 2016; 84:820–827. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Micaêlo NM  Soares CM 《The FEBS journal》2007,274(9):2424-2436
A comprehensive study of the hydration mechanism of an enzyme in nonaqueous media was done using molecular dynamics simulations in five organic solvents with different polarities, namely, hexane, 3-pentanone, diisopropyl ether, ethanol, and acetonitrile. In these solvents, the serine protease cutinase from Fusarium solani pisi was increasingly hydrated with 12 different hydration levels ranging from 5% to 100% (w/w) (weight of water/weight of protein). The ability of organic solvents to 'strip off' water from the enzyme surface was clearly dependent on the nature of the organic solvent. The rmsd of the enzyme from the crystal structure was shown to be lower at specific hydration levels, depending on the organic solvent used. It was also shown that organic solvents determine the structure and dynamics of water at the enzyme surface. Nonpolar solvents enhance the formation of large clusters of water that are tightly bound to the enzyme, whereas water in polar organic solvents is fragmented in small clusters loosely bound to the enzyme surface. Ions seem to play an important role in the stabilization of exposed charged residues, mainly at low hydration levels. A common feature is found for the preferential localization of water molecules at particular regions of the enzyme surface in all organic solvents: water seems to be localized at equivalent regions of the enzyme surface independently of the organic solvent employed.  相似文献   

4.
The conformational stability and activity of Candida antarctica lipase B (CALB) in the polar and nonpolar organic solvents were investigated by molecular dynamics and quantum mechanics/molecular mechanics simulations. The conformation change of CALB in the polar and nonpolar solvents was examined in two aspects: the overall conformation change of CALB and the conformation change of the active site. The simulation results show that the overall conformation of CALB is stable in the organic solvents. In the nonpolar solvents, the conformation of the active site keeps stable, whereas in the polar solvents, the solvent molecules reach into the active site and interact intensively with the active site. This interaction destroys the hydrogen bonding between Ser105 and His224. In the solvents, the activation energy of CALB and that of the active site region were further simulated by quantum mechanics/molecular mechanics simulation. The results indicate that the conformation change in the region of active sites is the main factor that influences the activity of CALB.  相似文献   

5.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.

Background  

The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined.  相似文献   

7.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   

8.
In this work, we used molecular dynamic (MD) simulation to study trypsin with and without a six-amino-acid peptide bound in three different solvents (water, acetonitrile and hexane) in order to provide molecular information for well understanding the structure and function of enzymes in non-aqueous media. The results show that the enzyme is more compact and less native-like in hexane than in the other two polar solvents. The substrate could stabilize the native protein structure in the two polar media, but not in the non-polar hexane. There are no significant differences in the conformation of the S1 pocket upon the substrate binding in water and acetonitrile media while a reverse behavior is observed in hexane media, implying a possible induced fit binding mechanism in the non-polar media. The substrate binding enhances the stability of catalytic H-bond network since it could expel the solvent molecules from the active site. The enzyme and the substrate appear to be more appropriate to the reactive conformation in the organic solvents compared with aqueous solution. There is much greater substrate binding strength in hexane media than the water and acetonitrile ones since the polar solvent significantly weakens electrostatic interactions, which are observed to be the main driving force to the binding. In addition, some residues of the S1 pocket could remain favorable contribution to the binding despite the solvent change, but with differences in the contribution extent, the number and the type of residues between the three media.
Figure
Free trypsin and trypsin-substrate complex in aqueous, acetonitrile and hexane media are studied using molecular dynamics simulation. Structure, solvent distribution, interactions of important residues and substrate binding are discussed in order to provide useful molecular information for well understanding the structure and function of enzyme in non-aqueous media.  相似文献   

9.
The rate of hydrolysis of p-nitrophenyl acetate (PNPA) catalyzed by Mucor javanicus lipase has been measured in AOT reverse micellar solutions formulated in aliphatic hydrocarbons, aromatic hydrocarbons and a chlorinated compound. The study has been performed at a single value of W = ([water]/[AOT]) = 6.0. Fluorescence decay measurements of intrinsic enzyme fluorescence, mainly due to tryptophan residues, in the different reverse micellar systems were also carried out, in an attempt to obtain some insight on the effect of the organic solvent on the protein conformation. Differences observed in the kinetics of the fluorescence decays of tryptophan residues of the lipase incorporated to the micelles with the different external organic solvents were also found in the catalytic behaviour of the enzyme. In particular, it is observed that the contribution of the long lived component of the fluorescence decay is considerably higher (ca. 40%) in aliphatic than in aromatic solvents (ca. 15%), indicating significant differences in the protein conformation. This effect of the organic solvent on the protein conformation is also observed in the enzymatic activity, which is higher in the aromatic than in the aliphatic solvents.  相似文献   

10.
The influence on lipase activity in water of a pretreatment on Candida rugosa lipase using water miscible and immiscible solvents was studied. The lipase activity in the hydrolysis of esteric substrates in aqueous media increases when the lipase was previously treated with various nearly anhydrous organic media. This activation, which was irreversible, was higher for longer pretreatment times. It was dependent on the pretreatment medium (water activity and solvent used). A relation between variations in the emission intensity and the activities of treated and untreated lipases was found. Activating pretreatment did not shift the peak of fluorescence emission but gave rise to variations in the secondary protein structure by increasing the helical nature. A similar increment in the hydrolysis rate in water can be obtained with the addition of an appropriate amount of solvent (acetonitrile or n-heptane) to the aqueous reaction medium.  相似文献   

11.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

12.
A hydrophobic substrate triolein was hydrolyzed by lipase in a mono-phase reaction system containing cyclodextrin(CD) as emulsifier. The triolein was transformed to an emulsion-like state in the CD containing reaction system in contrast to the oil-droplet like state without CD due to the formation of an inclusion complex between the lipids and CDs. The hydrolysis reaction increased substantially in the CD containing reaction system, and the optimum reaction conditions including the amount of lipase, β-CD concentration, and mixing ratio of triolein and β-CD, were determined. The performance of the enzyme reaction in a mono-phase reaction system was compared with that of a two-phase reaction system which used water immiscible hexane as the organic solvent. The role of a CD in the mono-phase reaction system was elucidated by comparing the degree of the inclusion complex formation with triolein and oleic acid, Km and Vmax values, and product inhibition by oleic acid in aqueous and CD containing reaction systems. The resulting enhanced reaction seems to be caused by two phenomena; the increased accessibility of lipase to triolein and reduced product inhibition by oleic acid through the formation of an inclusion complex.  相似文献   

13.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

14.
Enzyme catalysis in water-immiscible organic solvents is strongly influenced by the amount of water present in the reaction mixture. Effects of substitution of part of the water by other polar solvents were studied. In an alcoholysis reaction catalyzed by chymotrypsin deposited on celite, it was possible to exchange half of the water by formamide, ethylene glycol or dimethyl sulfoxide with often increased initial reaction rate. Furthermore, these substitutions caused the suppression of the competing hydrolysis reaction. However, formamide caused enzyme inactivation, and ethylene glycol participated as a reactant in the alcoholysis to some extent, hence dimethyl sulfoxide was considered the best water substitute among the solvents tested. These effects were noted for chymotrypsin catalyzed alcoholysis in several water immiscible solvents and also for interesterification reactions catalyzed by Candida cylindracea lipase on celite. In the latter case a change in the stereoselectivity was observed. At a low water content a high stereoselectivity was observed; when the amount of polar solvent was increased, either by doubling the water content or adding an equal amount of DMSO, the stereoselectivity decreased.  相似文献   

15.
Summary Polyethylene glycol-modified enzymes dissolved and had high enzymic activity in organic solvents. A trace amount of water was found to be necessary for the activity. It was reasoned that the amphipathic polymer covalently attached to enzymes kept water molecules around them. This was supported by findings that : (1) high enzymic activity was found in water- immiscible solvents, whereas activity was never observed in water-miscible solvents; (2) enzymic activity was inhibited by increasing the concentration of dimethyl sulfoxide in benzene; (3) activity of lipase was inhibited by a water-miscible alcohol substrate, but was steadily elevated by increasing the concentration of a water-immiscible alcohol substrate; (4) water was not absorbed from benzene solution containing a modified enzyme by molecular sieves, while it was easily absorbed in the presence of a water-miscible organic solvent, dimethyl sulfoxide.  相似文献   

16.
For developing further uses of lipase as a biocatalyst, its hydrolytic activity toward some esters was investigated in a miscible solution composed of a buffer and a polar organic solvent. Twenty percent dimethylformamide, 35% dimethylsulfoxide, 15% 1,4-dioxane, 15% dimethoxyethane, and 2% diethoxyethane promoted the hydrolysis by a lipase from Rhizomucor miehei toward some hydrophobic substrates, 4-methylumbelliferyl oleate, 4-methylumbelliferyl palmitate, and monoolein. While hydrolysis by this lipase toward the substrates with a relatively weak hydrophobicity (4-metylumbelliferyl heptanoate and 4-methylumbelliferyl nanoate) was suppressed by these solvents. A fluorometric analysis showed that the polar organic solvent in the buffer induced some conformational change around a tryptophan residue of R. miehei lipase. In addition to the influence of the miscible solvent on the solubility of the substrates, the conformational change of the protein induced by the miscible solvent would also affect the reactive properties of the lipase. Adding a polar organic solvent to an aqueous solution will be an efficient method for changing hydrolytic performance of lipases.  相似文献   

17.
BackgroundUnderstanding the dynamics of enzymes in organic solvents has wider implications on their industrial applications. Pancreatic lipases, which show activity in their lid open-state, demonstrate enhanced activity in organic solvents at higher temperatures. However, the lid dynamics of pancreatic lipases in non-aqueous environment is yet to be clearly understood.MethodsDynamics of porcine pancreatic lipase (PPL) in open and closed conformations was followed in ethanol, toluene, and octanol using molecular simulation methods. In silico double mutant D250V and E254L of PPL (PPLmut-Cl) was created and its lid opening dynamics in water and in octanol was analyzed.ResultsPPL showed increase in solvent accessible surface area and decrease in packing density as the polarity of the surrounded solvent decreased. Breaking the interactions between D250-Y115, and D250-E254 in PPLmut-Cl directed the lid to attain open-state conformation. Major energy barriers during the lid movement in water and in octanol were identified. Also, the trajectories of lid movement were found to be different in these solvents.ConclusionsOnly the double mutant at higher temperature showed lid opening movement suggesting the essential role of the three residues in holding the lid in closed conformation. The lid opening dynamics was faster in octanol than water suggesting that non-polar solvents favor open conformation of the lid.General significanceThis study identifies important interactions between the lid and the residues in domain 1 which possibly keeps the lid in closed conformation. Also, it explains the rearrangements of residue–residue interactions during lid opening movement in water and in octanol.  相似文献   

18.
The resolution of 1,2-O-isopropylidene glycerol via enzyme catalyzed hydrolysis of the corresponding benzoic ester was investigated. Using lipase PS from Pseudomonas cepacia, we determined the influence of organic co-solvents on the activity and enantioselectivity of the enzyme. The performance of the lipase was correlated to the nature (logP, ε,μ and the percentage of the organic media. The highest enzymatic activity was found in solvents completely miscible or completely immiscible in water. The enzyme stereoselectivity was inversely related to the logP of the solvent.  相似文献   

19.
The resolution of 1,2-O-isopropylidene glycerol via enzyme catalyzed hydrolysis of the corresponding benzoic ester was investigated. Using lipase PS from Pseudomonas cepacia, we determined the influence of organic co-solvents on the activity and enantioselectivity of the enzyme. The performance of the lipase was correlated to the nature (logP, ?,μ and the percentage of the organic media. The highest enzymatic activity was found in solvents completely miscible or completely immiscible in water. The enzyme stereoselectivity was inversely related to the logP of the solvent.  相似文献   

20.
We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号