首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient siRNA selection using hybridization thermodynamics   总被引:1,自引:1,他引:0       下载免费PDF全文
Small interfering RNA (siRNA) are widely used to infer gene function. Here, insights in the equilibrium of siRNA-target hybridization are used for selection of efficient siRNA. The accessibilities of siRNA and target mRNA for hybridization, as measured by folding free energy change, are shown to be significantly correlated with efficacy. For this study, a partition function calculation that considers all possible secondary structures is used to predict target site accessibility; a significant improvement over calculations that consider only the predicted lowest free energy structure or a set of low free energy structures. The predicted thermodynamic features, in addition to siRNA sequence features, are used as input for a support vector machine that selects functional siRNA. The method works well for predicting efficient siRNA (efficacy >70%) in a large siRNA data set from Novartis. The positive predictive value (percentage of sites predicted to be efficient for silencing that are) is as high as 87.6%. The sensitivity and specificity are 22.7 and 96.5%, respectively. When tested on data from different sources, the positive predictive value increased 8.1% by adding equilibrium terms to 25 local sequence features. Prediction of hybridization affinity using partition functions is now available in the RNAstructure software package.  相似文献   

2.
3.
4.
5.
Group I introns have been engineered into trans-splicing ribozymes capable of replacing the 3'-terminal portion of an external mRNA with their own 3'-exon. Although this design makes trans-splicing ribozymes potentially useful for therapeutic application, their trans-splicing efficiency is usually too low for medical use. One factor that strongly influences trans-splicing efficiency is the position of the target splice site on the mRNA substrate. Viable splice sites are currently determined using a biochemical trans-tagging assay. Here, we propose a rapid and inexpensive alternative approach to identify efficient splice sites. This approach involves the computation of the binding free energies between ribozyme and mRNA substrate. We found that the computed binding free energies correlate well with the trans-splicing efficiency experimentally determined at 18 different splice sites on the mRNA of chloramphenicol acetyl transferase. In contrast, our results from the trans-tagging assay correlate less well with measured trans-splicing efficiency. The computed free energy components suggest that splice site efficiency depends on the following secondary structure rearrangements: hybridization of the ribozyme's internal guide sequence (IGS) with mRNA substrate (most important), unfolding of substrate proximal to the splice site, and release of the IGS from the 3'-exon (least important). The proposed computational approach can also be extended to fulfill additional design requirements of efficient trans-splicing ribozymes, such as the optimization of 3'-exon and extended guide sequences.  相似文献   

6.
Dennis S  Camacho CJ  Vajda S 《Proteins》2000,38(2):176-188
To understand water-protein interactions in solution, the electrostatic field is calculated by solving the Poisson-Boltzmann equation, and the free energy surface of water is mapped by translating and rotating an explicit water molecule around the protein. The calculation is applied to T4 lysozyme with data available on the conservation of solvent binding sites in 18 crystallographically independent molecules. The free energy maps around the ordered water sites provide information on the relationship between water positions in crystal structure and in solution. Results show that almost all conserved sites and the majority of nonconserved sites are within 1.3 A of local free energy minima. This finding is in sharp contrast to the behavior of randomly placed water molecules in the boundary layer, which, on the average, must travel more than 3 A to the nearest free energy minimum. Thus, the solvation sites are at least partially determined by protein-water interactions rather than by crystal packing alone. The characteristic water residence times, obtained from the free energies at the local minima, are in good agreement with nuclear magnetic resonance experiments. Only about half of the potential sites show up as ordered water in the 1.7 A resolution X-ray structure. Crystal packing interactions can stabilize weak or mobile potential sites (in fact, some ordered water positions are not close to free energy minima) or can prevent water from occupying certain sites. Apart from a few buried water molecules that are strong binders, the free energies are not very different for conserved and nonconserved sites. We show that conservation of a water site between two crystals occurs if the positions of protein atoms, primarily contributing to the free energy at the local minimum, do not substantially change from one structure to the other. This requirement can be correlated with the nature of the side chain contacting the water molecule in the site.  相似文献   

7.
Lee KH  Holl MM 《Biopolymers》2011,95(6):401-409
Molecular dynamics simulations were carried out to calculate the free energy change difference of two collagen-like peptide models for Gly --> Ser mutations causing two different osteogenesis imperfecta phenotypes. These simulations were performed to investigate the impact of local amino acid sequence environment adjacent to a mutation site on the stability of the collagen. The average free energy differences for a Gly --> Ser mutant relative to a wild type are 3.4 kcal/mol and 8.2 kcal/mol for a nonlethal site and a lethal site, respectively. The free energy change differences of mutant containing two Ser residues relative to the wild type at the nonlethal and lethal mutation sites are 4.6 and 9.8 kcal/mol, respectively. Although electrostatic interactions stabilize mutants containing one or two Ser residues at both mutation sites, van der Waals interactions are of sufficient magnitude to cause a net destabilization. The presence of Gln and Arg near the mutation site, which contain large and polar side chains, provide more destabilization than amino acids containing small and nonpolar side chains.  相似文献   

8.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

9.
Jin HY  Luo LF  Zhang LR 《Gene》2008,424(1-2):115-120
A crucial part in the gene structure prediction is to identify the accurate splice sites, not only constitutive but also alternative ones. Here, we use the maximum information principle (MIP) to analyze the conservative segments around splice sites. According to the MIP, a reaction free energy (RFE) expression is deduced, which can be employed to estimate the free energy change during splicing reaction involving a donor or acceptor site. The expression contains not only the background probability factors, but also all kinds of dependencies among both adjacent and non-adjacent bases. We apply the RFE expression to recognize splice sites and their flanking competitors in human genes, the results show high sensitivity and specificity, so the RFE expression accords well with the splicing reaction process. Moreover, the RFE expression is better than previous methods for predicting competitors of splice sites, and it outperforms the reaction free energy subtraction (RFES), that implies RFE competition between a given splice site and its flanking competitor may not be an only primary factor for alternative splice site selection. The work is helpful to not only the understanding of splicing reaction from its relation to MIP, but also the research on computational recognition of splicing sites and alternative splice events.  相似文献   

10.
11.
NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.  相似文献   

12.
Positive cooperativity, defined as an enhancement of the ligand affinity at one site as a consequence of binding the same type of ligand at another site, is a free energy coupling between binding sites. It can be present both in systems with sites having identical ligand affinities and in systems where the binding sites have different affinities. When the sites have widely different affinities such that they are filled with ligand in a sequential manner, it is often difficult to quantify or even detect the positive cooperativity, if it occurs. This study presents verification and quantitative measurements of the free energy coupling between the two calcium binding sites in a mutant form of calbindin D9k. Wild-type calbindin D9k binds two calcium ions with similar affinities and positive cooperativity--the free energy coupling, delta delta G, is around -8 kJ.mol-1 (Linse S, et al., 1991, Biochemistry 30: 154-162). The mutant, with the substitution Asn 56-->Ala, binds calcium in a sequential manner. In the present work we have taken advantage of the variations among different metal ions in terms of their preferences for the two binding sites in calbindin D9k. Combined studies of the binding of Ca2+, Cd2+, and La3+ have allowed us to conclude that in this mutant delta delta G < -6.4 kJ.mol-1, and that Cd2+ and La3+ also bind to this protein with positive cooperativity. The results justify the use of the (Ca2+)1 state of the Asn 56-->Ala mutant, as well as the (Cd2+)1 state of the wild type, as models for the half-saturated states along the two pathways of cooperative Ca2+ binding in calbindin D9k.  相似文献   

13.
使用估计的反应自由能预测组成性和可变剪接位点   总被引:2,自引:0,他引:2  
基因结构预测中的一个重要步骤是精确地识别剪接位点。基于剪接反应的基本物理原则,最大信息原理被应用到剪接反应的理论分析中,进而导出了反应自由能估计表达式。作为一个简化模型,这个表达式能被用来估计一个5′剪接区或者3′剪接区所参与的剪接反应中的自由能变化。它不但较全面地概括了各个碱基之间的关联,而且还考虑了基因组背景概率的影响。这个反应自由能表达式被用来预测了人类基因中的组成性和可变剪接位点,预测结果是令人满意的,其预测能力比得上当前的一些流行方法。这说明最大信息原理可以作为研究某些核酸-蛋白质相互作用系统(如剪接反应)的理论出发点,导出的反应自由能表达式较好地符合了剪接反应过程。  相似文献   

14.
SUMMARY: We describe a tool, called aCGH-Smooth, for the automated identification of breakpoints and smoothing of microarray comparative genomic hybridization (array CGH) data. aCGH-Smooth is written in visual C++, has a user-friendly interface including a visualization of the results and user-defined parameters adapting the performance of data smoothing and breakpoint recognition. aCGH-Smooth can handle array-CGH data generated by all array-CGH platforms: BAC, PAC, cosmid, cDNA and oligo CGH arrays. The tool has been successfully applied to real-life data. AVAILABILITY: aCGH-Smooth is free for researchers at academic and non-profit institutions at http://www.few.vu.nl/~vumarray/.  相似文献   

15.
Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.  相似文献   

16.
GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.  相似文献   

17.
The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBFGHJKL operon, while previous studies indicated that rubredoxin reductase is most likely encoded on the second alk cluster: the alkST operon. In this study we show that alkT encodes the 41 x 10(3) Mr rubredoxin reductase, on the basis of a comparison of the expected amino acid composition of AlkT and the previously established amino acid composition of the purified rubredoxin reductase. The alkT sequence revealed significant similarities between AlkT and several NAD(P)H and FAD-containing reductases and dehydrogenases. All of these enzymes contain two ADP binding sites, which can be recognized by a common beta alpha beta-fold or fingerprint, derived from known structures of cofactor binding enzymes. By means of this amino acid fingerprint we were able to determine that one ADP binding site in rubredoxin reductase (AlkT) is located at the N terminus and is involved in FAD binding, while the second site is located in the middle of the sequence and is involved in the binding of NAD or NADP. In addition, we derived from the sequences of FAD binding reductases a second amino acid fingerprint for FAD binding, and we used this fingerprint to identify a third amino acid sequence in AlkT near the carboxy terminus for binding of the flavin moiety of FAD. On the basis of the known architecture and relative spatial orientations of the NAD and FAD binding sites in related dehydrogenases, a model for part of the tertiary structure of AlkT was developed.  相似文献   

18.
Nicotinic acetylcholine receptors (AChRs) are synaptic ion channels that spontaneously isomerize (i.e., gate) between resting and active conformations. We used single-molecule electrophysiology to measure the temperature dependencies of mouse neuromuscular AChR gating rate and equilibrium constants. From these we estimated free energy, enthalpy, and entropy changes caused by mutations of amino acids located between the transmitter binding sites and the middle of the membrane domain. The range of equilibrium enthalpy change (13.4 kcal/mol) was larger than for free energy change (5.5 kcal/mol at 25°C). For two residues, the slope of the rate-equilibrium free energy relationship (Φ) was approximately constant with temperature. Mutant cycle analysis showed that both free energies and enthalpies are additive for energetically independent mutations. We hypothesize that changes in energy associated with changes in structure mainly occur close to the site of the mutation, and, hence, that it is possible to make a residue-by-residue map of heat exchange in the AChR gating isomerization. The structural correlates of enthalpy changes are discussed for 12 different mutations in the protein.  相似文献   

19.
Thermodynamics of RNA-RNA binding   总被引:3,自引:0,他引:3  
BACKGROUND: Reliable prediction of RNA-RNA binding energies is crucial, e.g. for the understanding on RNAi, microRNA-mRNA binding and antisense interactions. The thermodynamics of such RNA-RNA interactions can be understood as the sum of two energy contributions: (1) the energy necessary to 'open' the binding site and (2) the energy gained from hybridization. METHODS: We present an extension of the standard partition function approach to RNA secondary structures that computes the probabilities Pu[i, j] that a sequence interval [i, j] is unpaired. RESULTS: Comparison with experimental data shows that Pu[i, j] can be applied as a significant determinant of local target site accessibility for RNA interference (RNAi). Furthermore, these quantities can be used to rigorously determine binding free energies of short oligomers to large mRNA targets. The resource consumption is comparable with a single partition function computation for the large target molecule. We can show that RNAi efficiency correlates well with the binding energies of siRNAs to their respective mRNA target. AVAILABILITY: RNAup will be distributed as part of the Vienna RNA Package, www.tbi.univie.ac.at/~ivo/RNA/  相似文献   

20.
A strategy for isolating each of the four potentially unique heterotropic pairwise allosteric interactions that exist in the homotetramer phosphofructokinase from Bacillus stearothermophilus is described. The strategy involves the construction of hybrid tetramers containing one wild-type subunit and three mutant subunits that have been modified to block binding of both the substrate, fructose 6-phosphate (Fru-6-P), and the allosteric inhibitor, phospho(enol)pyruvate (PEP). Each type of binding site occurs at a subunit interface, and mutations on either side of the interface have been identified that will greatly diminish binding at the respective site. Consequently, four different types of mutant subunits have been created, each containing a different active site and allosteric site modification. The corresponding 1:3 hybrids isolate a different pair of unmodified substrate and allosteric sites with a unique structural disposition located 22, 30, 32, and 45 A apart, respectively. The allosteric inhibition exhibited by the unmodified sites in each of these four hybrids has been quantitatively evaluated in terms of a coupling free energy. Each of the coupling free energies is unique in magnitude, and their relative magnitudes vary with pH. Importantly, the sum of these coupling free energies at each pH is equal to the total heterotropic coupling free energy associated with the tetrameric enzyme. The latter quantity was assessed from the overall inhibition of a control hybrid that removed the homotropic interactions in PEP binding. The results do not agree with either the concerted or sequential models that are often invoked to explain allosteric behavior in oligomeric enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号