首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nitrogen-15 chemical shift of the N1 (tau)-nitrogen of 15N-labeled histidine and the half-height line widths of proton-coupled resonances of the delta- and omega,omega'-nitrogens of 15N-labeled arginine and of the alpha-nitrogens of 15N-labeled alanine and proline were measured in intact mycelia of Neurospora crassa to obtain to estimates of intracellular pH. For intracellular 15N-labeled histidine, the N1 (tau)-nitrogen chemical shift was 200.2 ppm. In vitro measurements showed that the chemical shift was slightly affected by the presence of phosphate, with which the basic amino acids may be associated in vivo. These considerations indicate a pH of 5.7-6.0 for the environment of intracellular histidine. The half-height line widths of the delta- and omega,omega'-nitrogens of [15N]arginine were 15 and 26 Hz, respectively. In vitro studies showed that these line widths also are influenced by the presence of phosphate, and, after suitable allowance for this, the line widths indicate pH 6.1-6.5 for intracellular arginine. The half-height line widths for intracellular alanine and proline were 17 and 12 Hz, respectively, which are consistent with an intracellular pH of 7.1-7.2. Pools of histidine and arginine are found principally in the vacuole of Neurospora, most likely in association with polyphosphates. Proline and alanine are cytoplasmic. The results reported here are consistent with these localizations and indicate that the vacuolar pH is 6.1 +/- 0.4 while the cytoplasmic pH is 7.15 +/- 0.10. Comparisons of these estimates with those obtained by other techniques and their implications for vacuolar function are discussed.  相似文献   

2.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

3.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

4.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

5.
A number of arginine derivatives were tested for their ability to inhibit arginine uptake into vacuolar membrane vesicles of Neurospora crassa. The guanido side chain and L-configuration were found to be important for recognition by the arginine carrier. Based upon the specificity of recognition, a reactive arginine derivative (N alpha-p-nitrobenzyloxycarbonyl arginyl diazomethane) was synthesized which has an intact guanido side chain and a diazo group at the carboxyl end. The latter decomposes to a reactive carbene group. This derivative inhibited arginine uptake into vacuolar membrane vesicles at low concentrations. Radioactive N alpha-p-nitrobenzyloxycarbonyl arginyl diazomethane was covalently bound to vacuoles. Binding was specific for a single membrane protein with an approximate molecular weight of 40,000, saturable (2 pmol/mg vacuolar membrane protein), and inhibited by 100 mM L-arginine but not by 100 mM L-lysine. The results suggest that this protein is the arginine carrier.  相似文献   

6.
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.  相似文献   

7.
Neurospora crassa mutant impaired in glutamine regulation.   总被引:3,自引:1,他引:2       下载免费PDF全文
The final products of the catabolism of arginine that can be utilized as nitrogen sources by Neurospora crassa are ammonium, glutamic acid, and glutamine. Of these compounds, only glutamine represses arginase and glutamine synthetase. We report here the isolation and characterization of a mutant of N. crassa whose arginase, glutamine synthetase, and amino acid accumulations are resistant to glutamine repression (glnI). This mutant has a greater capacity than the wild type (glns) to accumulate most of the arginine and some of the glutamine in osmotically sensitive compartments while growing exponentially. Nonetheless, the major part of the glutamine remains soluble and metabolically available for repression. We propose that the lower repression of glutamine synthetase by glutamine in this mutant could be a necessary condition for sustaining the higher flow of nitrogen for the accumulation of amino acids observed in ammonium excess and that, if glutamine is the nitrogen signal that regulates the arginine accumulation of the vesicle, the glnr mutant has also escaped this control. Finally, in the glnr mutant, some glutamine resynthesis is necessary for arginine biosynthesis and accumulation.  相似文献   

8.
Membrane potentials, input resistances, and electric coupling in the apical parts of N. crassa growing hyphae were recorded with the aid of intracellular microelectrodes. It was revealed that the apical cells were always depolarized by 10 to 30 mV as compared to the adjacent proximal cells. The septal pore maintained an electrical resistance of 4 to 6 M omega. The calculated values of the endogenous electrical current passing through the septal pore varied between 0.5 and 1 nA. Electrical isolation of the apical cells resulted in their depolarization from 120-150 mV to 40-60 mV, characteristics of the membrane potential value of N. crassa adult hyphae with completely blocked electrogenic pumps. A simultaneous increase in the input resistance value from 15-20 M omega to 40-80 M omega was observed. The above data can be explained assuming that H+-ATPase activity was greatly lowered in the apical cells. Thus in the intact hyphae with electrically coupled cells energy is transferred from the proximal hyphal compartments to the apical ones.  相似文献   

9.
The aim of this study was to evaluate the effects of streptozotocin-induced type 1diabetes and a subchronic treatment with cyclohexanonic long-chain fatty alcohol, 3-(15-hydroxypentadecyl)-2,4,4-trimethyl-2-cyclohexen 1-one (tCFA15) on contents of amino acids including aspartate, glutamate, glutamine, GABA, glycine, taurine, alanine, serine, threonine, and arginine in the prefrontal cortex, hippocampus and striatum. Levels of glutamate, threonine, taurine, alanine, arginine, and the ratio of glutamate/glutamine were altered region-differently in the brain of diabetic rats. However, tCFA15 region-specifically antagonized the changes in taurine and arginine levels and the ratio of glutamate/glutamine. The alteration in glutamate/glutamine ratio may indicate that experimental models of type 1 diabetes have abnormalities of neuron-gria interaction in brain.  相似文献   

10.
The influences of different nitrogen sources on the relative rates of biosynthesis of glutamine and alanine have been studied by 15N nuclear magnetic resonance spectroscopy of intact Neurospora crassa mycelia suspensions. The rate of glutamine synthesis was fastest after growth in media deficient in free ammonium ion, whereas it was slowest following growth in media containing both glutamic acid and glutamine. The reverse trend was observed for the biosynthesis of alanine. A competition between the two biosynthetic pathways for the same substrate, glutamic acid, was found to limit the rate of alanine synthesis when glutamine synthesis was rapid. The observed in vivo rates of these reactions are compared to the reported specific activities of the enzymes catalyzing the reactions, and implications of these results for nitrogen regulation of these pathways under various physiological conditions are discussed.  相似文献   

11.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

12.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

13.
We focused on the role of plasma membrane glutamate uptake in modulating the intracellular glutaminase (GA) and glutamate dehydrogenase (GDH) flux and in determining the fate of the intracellular glutamate in the proximal tubule-like LLC-PK(1)-F(+) cell line. We used high-affinity glutamate transport inhibitors D-aspartate (D-Asp) and DL-threo-beta-hydroxyaspartate (THA) to block extracellular uptake and then used [(15)N]glutamate or [2-(15)N]glutamine to follow the metabolic fate and distribution of glutamine and glutamate. In monolayers incubated with [2-(15)N]glutamine (99 atom %excess), glutamine and glutamate equilibrated throughout the intra- and extracellular compartments. In the presence of 5 mM D-Asp and 0.5 mM THA, glutamine distribution remained unchanged, but the intracellular glutamate enrichment decreased by 33% (P < 0.05) as the extracellular enrichment increased by 39% (P < 0.005). With glutamate uptake blocked, intracellular glutamate concentration decreased by 37% (P < 0.0001), in contrast to intracellular glutamine concentration, which remained unchanged. Both glutamine disappearance from the media and the estimated intracellular GA flux increased with the fall in the intracellular glutamate concentration. The labeled glutamate and NH formed from [2-(15)N]glutamine and recovered in the media increased 12- and 3-fold, respectively, consistent with accelerated GA and GDH flux. However, labeled alanine formation was reduced by 37%, indicating inhibition of transamination. Although both D-Asp and THA alone accelerated the GA and GDH flux, only THA inhibited transamination. These results are consistent with glutamate transport both regulating and being regulated by glutamine and glutamate metabolism in epithelial cells.  相似文献   

14.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   

15.
16.
TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.  相似文献   

17.
Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies   总被引:4,自引:0,他引:4  
Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed.  相似文献   

18.
The total reticulocyte lysate cell-free protein-synthesizing system was incubated in the presence of Neurospora crassa RNA. With the aid of an antibody directed against purified N. crassa glutamine synthetase, the synthesis of a specific protein was detected. This protein precipitates with antiglutamine synthetase using both direct and indirect procedures, migrates with the same molecular weight as the monomer of N. crassa glutamine synthetase when subjected to acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and chromatographs as N. crassa glutamine synthetase on anthranilate-bound Sepharose. These data indicate the translation of the mRNA that codes for N. crassa glutamine synthetase. This RNA behaves as poly(A)-containing material when fractionated on oly(U)-Sepha-rose.  相似文献   

19.
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.  相似文献   

20.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号