首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
ASAP: the Alternative Splicing Annotation Project   总被引:2,自引:0,他引:2  
Recently, genomics analyses have demonstrated that alternative splicing is widespread in mammalian genomes (30-60% of genes reported to have multiple isoforms), and may be one of their most important mechanisms of functional regulation. However, by comparison with other genomics data such as genome annotation, SNPs, or gene expression, there exists relatively little database infrastructure for the study of alternative splicing. We have constructed an online database ASAP (the Alternative Splicing Annotation Project) for biologists to access and mine the enormous wealth of alternative splicing information coming from genomics and proteomics. ASAP is based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. Moreover, it can help biologists design probe sequences for distinguishing specific mRNA isoforms. ASAP is intended to be a community resource for collaborative annotation of alternative splice forms, their regulation, and biological functions. The URL for ASAP is http://www.bioinformatics.ucla.edu/ASAP.  相似文献   

5.
6.
7.
We previously reported a computational approach to infer alternative splicing patterns from Mus musculus full-length cDNA clones and microarray data. Although we predicted a large number of unreported splice variants, the general mechanisms regulating alternative splicing were yet unknown. In the present study, we compared alternative exons and constitutive exons in terms of splice-site strength and frequency of potential regulatory sequences. These regulatory features were further compared among five different species: Homo sapiens, M. musculus, Arabidopsis thaliana, Oryza sativa, and Drosophila melanogaster. Solid statistical validations of our comparative analyses indicated that alternative exons have (1) weaker splice sites and (2) more potential regulatory sequences than constitutive exons. Based on our observations, we propose a combinatorial model of alternative splicing mechanisms, which suggests that alternative exons contain weak splice sites regulated alternatively by potential regulatory sequences on the exons.  相似文献   

8.
Alternative pre-mRNA splicing may be the most efficient and widespread mechanism to generate multiple protein isoforms from single genes. Here, we describe the genomic analysis of one of the most frequent types of alternative pre-mRNA splicing, alternative 5'- and 3'-splice-site selection. Using an EST-based alternative splicing database recording >47,000 alternative splicing events, we determined the frequency and location of alternative 5'- and 3'-splice sites within the human genome. The most common alternative splice sites used in the human genome are located within 6 nucleotides (nt) of the dominant splice site. We show that the EST database overrepresents alternative splicing events that maintain the reading frame, thus supporting the concept that RNA quality-control steps ensure that mRNAs that encode for potentially harmful protein products are destroyed and do not serve as templates for translation. The most frequent location for alternative 5'-splice sites is 4 nt upstream or downstream from the dominant splice site. Sequence analysis suggests that this preference is a consequence of the U1 snRNP binding sequence at the 5'-splice site, which frequently contains a GU dinucleotide 4 nt downstream from the dominant splice site. Surprisingly, approximately 50% of duplicated 3'-YAG splice junctions are subject to alternative splicing. This high probability of alternative 3'-splice-site activation in close proximity of the dominant 3'-splice site suggests that the second step of the splicing may be prone to violate splicing fidelity.  相似文献   

9.
10.
11.
水稻NBS-LRR基因选择性剪接的全基因组检测及分析   总被引:1,自引:0,他引:1  
顾连峰  郭荣发 《遗传学报》2007,34(3):247-257
选择性剪接是促进基因组复杂性和蛋白质组多样性的一种主要机制,但是对水稻NBS-LRR序列选择性剪接的全基因组分析却未见报道。通过隐马尔柯夫模型搜索,从TIGR数据库里得到了855条编码NBS-LRR基序的序列。利用这些序列在KOME、TIGR基因索引及UniProt三个数据库中进行同源搜索,获得同源的完整cDNA序列、假设一致性序列和蛋白质序列。再利用Spidey和SIM4程序把完整cDNA序列和假设一致性序列联配到相应的BAC序列上来预测选择性剪接。蛋白质序列和基因组序列之间的联配使用tBLASTn。在这875个NBS-LRR基因中,119个基因具有选择性剪接现象,其中包括71内含子保留,20个外显子跳跃,25个选择性起始,16个选择性终止,12个5′端的选择性剪接和16个3′端选择性剪接。大多数选择性剪接都为两个和多个转录本所支持。可以通过访问http://www.bioinfor.org查询这些数据。进而通过生物信息学分析剪接边界发现外显子跳跃和内含子保留的‘GT…AG’的规则不如组成型的保守。这暗示了它们是通过不同的调控机制来指导剪接变构体的形成。通过分析内含子保留对蛋白质的影响,发现选择性剪接的蛋白更倾向于改变其C端氨基酸序列。最后对选择性剪接的组织分布和蛋白质定位进行分析,结果表明选择性剪接的最大类的组织分布是根和愈伤组织。超过1/3剪接变构体的蛋白质定位是质膜和细胞质。这些选择性剪接蛋白可能在抗病信号转导中起到重要作用。  相似文献   

12.
13.
鉴定9个新的RHD基因mRNA可变剪接体   总被引:1,自引:0,他引:1  
许先国  吴俊杰  洪小珍  朱发明  严力行 《遗传》2006,28(10):1213-1218
为了研究各种RHD基因mRNA可变剪接体的基因结构, 应用逆转录聚合酶链反应(RT-PCR)检测正常人脐血样本RHD mRNA, 对RHD cDNA进行TA克隆和序列分析, 对各可变剪接体的剪接位点进行DNA序列分析, 并将RHD mRNA进行表达序列标签(ESTs)分析。结果在28个阳性克隆中, 除全长RHD cDNA外, 共检测到12种(包括9种新的)RHD可变剪接体, 发现外显子遗漏、5′和3′剪接位点变异3种剪接形式, 涉及外显子2~9, 其中6种新的剪接体同时存在RHD和RHCE基因同源杂交现象。ESTs分析还检索到内含子保留形式的剪接体。研究表明, RHD基因mRNA存在复杂的可变剪接机制, 除已报道的剪接体外, 检测到9种新的RHD可变剪接体, 并发现了可变剪接和同源杂交并存现象。  相似文献   

14.
Even though nearly every human gene has at least one alternative splice form, very little is so far known about the structure and function of resulting protein products. It is becoming increasingly clear that a significant fraction of all isoforms are products of noisy selection of splice sites and thus contribute little to actual functional diversity, and may potentially be deleterious. In this study, we examine the impact of alternative splicing on protein sequence and structure in three datasets: alternative splicing events conserved across multiple species, alternative splicing events in genes that are strongly linked to disease and all observed alternative splicing events. We find that the vast majority of all alternative isoforms result in unstable protein conformations. In contrast to that, the small subset of isoforms conserved across species tends to maintain protein structural integrity to a greater extent. Alternative splicing in disease-associated genes produces unstable structures just as frequently as all other genes, indicating that selection to reduce the effects of alternative splicing on this set is not especially pronounced. Overall, the properties of alternative spliced proteins are consistent with the outcome of noisy selection of splice sites by splicing machinery.  相似文献   

15.
ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34(+) hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.  相似文献   

16.
完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段.  相似文献   

17.
Since its cloning in 1994, several studies have reported that thrombopoietin (THPO) presents several alternative splicing products that differ from the full-length protein in its 5' UTR, N- or C-terminal regions. Most of these splice variants are evolutionarily conserved and have been detected in different tissues as well as in cell lines. Although the possible functions of the THPO isoforms are still elusive, different clues link them to the peculiar mechanism that regulates THPO production. Moreover, novel fields to explore possible roles of the THPO variants are opened by observations that this hormone can influence the formation of hematopoietic progenitors and its expression occurs in some tumors as well as in tissues not directly related to the thrombopoiesis. In this review, we summarize the structure and functions of THPO through the published evidence on its splicing isoforms and discuss about their involvement with physiopathologic phenomena.  相似文献   

18.
19.
20.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号