共查询到20条相似文献,搜索用时 0 毫秒
1.
Omega-3 fatty acids and dementia 总被引:1,自引:1,他引:0
Greg M. Cole Qiu-Lan Ma Sally A. Frautschy 《Prostaglandins, leukotrienes, and essential fatty acids》2009,81(2-3):213
More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule-associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. 相似文献
2.
Bourre JM 《Médecine sciences : M/S》2005,21(2):216-221
The brain is one of the organs with the highest level of lipids (fats). Brain lipids, formed of fatty acids, participate in the structure of membranes, for instance 50 % fatty acids are polyunsaturated in the gray matter, 1/3 are of the omega-3 family, and are thus of dietary origin. The omega-3 fatty acids (mainly alpha-linolenic acid, ALA) participated in one of the first experimental demonstration of the effect of dietary substances (nutrients) on the structure and function of the brain. Experiments were first of all carried out on ex vivo cultured brain cells, then on in vivo brain cells (neurons, astrocytes and oligodendrocytes) from animals fed ALA deficient diet, finally on physicochemical (membrane fluidity), biochemical, physiological, neurosensory (vision an auditory responses), and behavioural or learning parameters. These findings indicated that the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for human infants determines to a certain extend the visual, neurological, and intellectual abilities. Thus, in view of these results and of the high polyunsaturated fatty acid content of the brain, it is normal to consider that they could be involved in psychiatric diseases and in the cognitive decline of ageing. Omega-3 fatty acids appear effective in the prevention of stress, however their role as regulator of mood is a matter for discussion. Indeed, they play a role in the prevention of some disorders including depression (especially post partum), as well as in dementia, particularly Alzheimer's disease. Their role in major depression and bipolar disorder (manic-depressive disease), only poorly documented, is not clearly demonstrated. The intervention of omega-3 in dyslexia, autism, and schizophrenia has been suggested, but it does not necessarily infer a nutritional problems. The respective importance of the vascular system (where the omega-3 are actually active) and the cerebral parenchyma itself, remain to be resolved. However, the insufficient supply of omega-3 fatty acids in today diet in occidental (less than 50 % of the recommended dietary intakes values for ALA) raises the problem of how to correct inadequate dietary habits, by prescribing mainly rapeseed (canola) and walnut oils on the one hand, fatty fish (wild, or farmed, but the nature of fatty acids present in fish flesh is the direct consequence of the nature of fats with which they have been fed), and eggs from laying hens fed omega-3 fatty acids. 相似文献
3.
Omega-3 fatty acids and neurological injury 总被引:1,自引:0,他引:1
Michael-Titus AT 《Prostaglandins, leukotrienes, and essential fatty acids》2007,77(5-6):295-300
Studies with omega-3 polyunsaturated fatty acids (PUFA) have shown that these compounds have therapeutic potential in several indications in neurology and psychiatry. Acute spinal cord injury (SCI) is an event with devastating consequences, and no satisfactory treatment is available at present. The pathogenetic mechanisms associated with SCI include excitotoxicity, increased oxidation and inflammation. We review here our recent studies, which suggest that omega-3 PUFA have significant neuroprotective potential in spinal cord trauma. In a first study, we administered an intravenous bolus of alpha-linolenic acid (LNA) or docosahexaenoic acid (DHA) 30 min after spinal cord hemisection injury in adult rats. The omega-3 PUFA led to increased neuronal and glial survival, and a significantly improved neurological outcome. In subsequent studies, we tested DHA in a more severe compression model of SCI. We also explored a combined acute and chronic treatment regime using DHA. Saline or DHA was administered intravenously 30 min after compression of the spinal cord. After injury, the saline group received a standard control diet, whereas DHA-injected animals received either a control or a DHA-enriched diet for 6 weeks following injury. We assessed locomotor recovery and analysed markers for cell survival and axonal damage, and we also investigated the effects of the treatment on the inflammatory reaction and the oxidative stress that follow SCI. We showed that the acute DHA treatment is neuroprotective after compression SCI, even if the treatment is delayed up to an hour after injury. The DHA injection led to an increased neuronal and glial cell survival, and the effect of the DHA injection was amplified by addition of DHA to the diet. Rats treated with a DHA injection and a DHA-enriched diet performed significantly better at 6 weeks in terms of neurological outcome. The analysis of the tissue after DHA administration showed that the fatty acid significantly reduced lipid peroxidation, protein oxidation and RNA/DNA oxidation, and the induction of COX-2. Parallel studies in a facial nerve injury model in mice also showed pro-regenerative effects of chronic dietary administration of DHA after nerve lesion. These observations suggest that treatment with omega-3 PUFA could represent a promising therapeutic approach in the management of neurological injury. 相似文献
4.
This paper reviews the role of the n-3 fatty acids in the regulation of cognitive functions, locomotor and exploratory activity and emotional status in rodents. There are disparate data on the performance of n-3 fatty acid deficient animals in the open field test and elevated plus maze. Results obtained in our laboratory indicated slower habituation to the open field in deficient mice, which affects total locomotor and exploratory parameters. We also observed no change in plus maze performance of deficient mice under low-stress but elevated anxiety under high-stress conditions. There is some evidence of elevated aggression and increased immobility time in the forced swimming test caused by n-3 fatty acid deficiency in rodents. Effects of n-3 fatty acid deficiency and supplementation on learning in several tests such as the Morris water maze, two odor olfactory discriminations, radial arm maze performance and avoidance tasks are reviewed in detail. There is some evidence of an enhanced vulnerability to stress of n-3 fatty acid deficient animals and this factor can influence performance in a variety of tests. Thus, behavioral tasks that involve a higher level of stress may better differentiate behavioral effects related to brain docosahexaenoic acid (DHA) status. It is suggested that a fruitful area for future investigations of functional alterations related to brain DHA status will be the delineation of the factors underlying changes in performance in behavioral tasks. The possible role of non-cognitive factors like emotionality and attention in the impaired performance of n-3 fatty acid deficient animals also requires further investigation. 相似文献
5.
Chalon S 《Prostaglandins, leukotrienes, and essential fatty acids》2006,75(4-5):259-269
We proposed several years ago that the behavioral effects of n-3 PUFA deficiency observed in animal models might be mediated through the dopaminergic and serotonergic systems that are very involved in the modulation of attention, motivation and emotion. We evaluated this hypothesis in an extended series of experiments on rats chronically diet-deficient in alpha-linolenic acid, the precursor of long-chain n-3 PUFA, in which we studied several parameters of these neurotransmission systems. The present paper synthesizes the main data we obtained on interactions between n-3 PUFA status and neurotransmission in animal models. We demonstrated that several parameters of neurotransmission were affected, such as the vesicular pool of dopamine and serotonin, thus inducing several regulatory processes such as modification of cerebral receptors in specific brain areas. We also demonstrated that (i) a reversal diet with adequate n-6 and n-3 PUFA given during the lactating period to rats originating from alpha-linolenic acid-deficient dams was able to restore both the fatty acid composition of brain membranes and several parameters of the dopaminergic and serotonergic neurotransmission, and (ii) when given from weaning, this reversal diet allowed partial recovery of biochemical parameters, but no recovery of neurochemical factors. The occurrence of profound n-3 PUFA deficiency during the lactating period could therefore be an environmental insult leading to irreversible damage to specific brain functions. Strong evidence is now showing that a profound n-3 PUFA experimental deficiency is able to alter several neurotransmission systems, at least the dopaminergic and serotonergic. Whether these experimental findings can be transposed to human pathophysiology must be taken cautiously, but reinforces the hypothesis that strong links exist between the PUFA status, aspects of brain function such as neurotransmission processes and behavior. 相似文献
6.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management. 相似文献
7.
Colin Masters 《Molecular and cellular biochemistry》1996,165(2):83-93
The interactions between the omega-3 unsaturated fatty acids and peroxisomal function have been reviewed, in order to update and integrate knowledge in this area. Following a brief retrospective of the major clinical involvements of these fatty acids, the participation of the peroxisome in their metabolism has been appraised - the peroxisome being shown to exert a major influence on both the synthesis and degradation of the omega-3 fatty acids, with these effects flowing on to the widespread physiological implications of the derivative eicosanoids. Interactions between the omega-3 and omega-6 families of fatty acids have been discussed, as have the interdependent phenomena of peroxisome proliferation, membrane remodelling and cellular signalling. Amongst the signalling involvements covered were those of steroid hormone receptor superfamily, the phosphatidy1choline cycle, and the regulatory influences of oxygen free radicals. Comment has also been included on the separate biological roles of the individual omega-3 fatty acids, their influence on differential gene function, and on the molecular mechanisms of their pharmacological effects. It is concluded that the peroxisome is intimately involved in directing the metabolism and physiological influence of the omega-3 unsaturated fatty acids, and that this organelle merits much greater emphasis in future research aimed at unravelling the profound biological effects of these unique and multipotent compounds. 相似文献
8.
Omega-3 fatty acids: physiology,biological sources and potential applications in supportive cancer care 总被引:1,自引:0,他引:1
L. Pottel M. Lycke T. Boterberg I. Foubert H. Pottel F. Duprez L. Goethals P. R. Debruyne 《Phytochemistry Reviews》2014,13(1):223-244
The impact of the Western diet on chronic diseases, such as cancer, has been well recognized. Dietary saturated and trans fatty acids have been found to play a negative role in obesity, heart disease, diabetes and cancer, while the beneficial health effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) have become widely accepted. Despite the current knowledge, n-3 PUFA intake is still under recommended daily intake levels in Europe. As wild fish, currently still the major source of n-3 PUFA, are facing a decline, alternative sources such as marine and plant (both natural and transgenic) sources are being explored. In this review we aim to provide an overview of the current biological sources of n-3 PUFAs, their part in normal physiology, as well as their emerging application in supportive cancer care, and more specifically in cancer cachexia, therapy-related neurocognitive dysfunction and distress. In addition, we provide a brief summary of currently ongoing clinical trials examining potential beneficial effects of n-3 PUFAs in reducing cancer(therapy)-related side effects, and describe future research directions. 相似文献
9.
Watkins BA Li Y Lippman HE Seifert MF 《Experimental biology and medicine (Maywood, N.J.)》2001,226(6):485-497
This minireview on skeletal biology describes the actions of prostaglandins and cytokines involved in the local regulation of bone metabolism, it documents the role of lipids in bone biology, and it presents relationships between fatty acids and other factors that impact skeletal metabolism. The data presented herein show consistent and reproducible beneficial effects of omega-3 (n-3) fatty acids on bone metabolism and bone/joint diseases. Polyunsaturated fatty acids modulate eicosanoid biosynthesis in numerous tissues and cell types, alter signal transduction, and influence gene expression. These effects have not been explored in the skeletal system. Future research on n-3 fatty acids in bone biology should focus on the following two aspects. First, the further elucidation of how n-3 fatty acids alter biochemical and molecular processes involved in bone modeling and bone cell differentiation, and second, the evaluation of the potential pharmaceutical applications of these nutraceutical fatty acids in maintaining bone mineral status and controlling inflammatory bone/joint diseases. 相似文献
10.
11.
Leaf A 《Current opinion in lipidology》2007,18(1):31-34
PURPOSE OF REVIEW: There is now a considerable factual basis from laboratory and clinical trials that omega-3 fatty acids of fish oil will prevent fatal arrhythmias in animals and humans and this is the focus of the review. RECENT FINDINGS: Several recent trials in humans have strengthened the evidence that omega-3 fatty acids may prevent arrhythmias although this has not been a uniform finding. SUMMARY: Since there are at present some 400 000 deaths annually in the US alone and millions more worldwide, what has been learned about the antiarrhythmic actions of omega-3 fatty acids has considerable potential public-health benefit. 相似文献
12.
A L Stoll C A Locke L B Marangell W E Severus 《Prostaglandins, leukotrienes, and essential fatty acids》1999,60(5-6):329-337
The important role of the omega-3 fatty acids in the pathophysiology and treatment of bipolar disorder is now supported by a substantial body of indirect and direct evidence. This paper will describe the clinical and pharmacological features of bipolar disorder, review the available data regarding omega-3 fatty acids in bipolar disorder and provide recommendations for future research. 相似文献
13.
Omega-3 fatty acids in cellular membranes: a unified concept 总被引:13,自引:0,他引:13
The Omega-3 fatty acid DHA (docosahexaenoic acid, 22:6) and its sister molecule EPA (eicosapentaenoic acid, 20:5) are highlighted here. These highly unsaturated fatty acids are widespread in nature, especially in the marine environment, and are essential in membranes ranging from deep sea bacteria to human neurons. Studies of DHA/EPA in bacteria have led to a working model on the structural roles of these molecules and are described in this review. The main points are: (a) genomic analysis shows that genes encoding the DHA/EPA pathways are similar, supporting the idea that structural roles in bacteria might be similar, (b) biochemical analysis shows that DHA and EPA are produced in bacteria by a polyketide process distinct from the pathway of plants and animals; this allows DHA and EPA to be produced in anaerobic or oxygen-limited environments, (c) regulatory systems triggered by temperature and pressure have been identified and studied, and add to the understanding of the roles of these molecules, (d) DHA/EPA bacteria are located almost exclusively in the marine environment, raising the prospect of an important linkage between membrane processes and marine conditions, (e) physiological studies of an EPA recombinant of E. coli show that EPA phospholipids contribute essential fluidity to the bilayer and that an EPA-enriched membrane supports a respiratory lifestyle dependent on proton bioenergetics; the EPA recombinant displays other physiological properties likely attributed to high levels of EPA in the bilayer, and (f) chemical studies such as chemical dynamic modeling support the idea that DHA and presumably EPA contribute hyperfluidizing properties to the membrane. We hypothesize that DHA/EPA phospholipids contribute fluidity and other properties to the bilayer which distinguish these highly unsaturated chains from monounsaturates and polyunsaturates such as 18:2 and 18:3. We further hypothesize that the structural properties of DHA/EPA functioning in bacteria are also harnessed by higher organisms for enhancing crucial membrane processes including photosynthesis and energy transduction. 相似文献
14.
Gunter P. Eckert Uta Lipka Walter E. Muller 《Prostaglandins, leukotrienes, and essential fatty acids》2013,88(1):105-114
Mitochondrial dysfunction represents a common early pathological event in brain aging and in neurodegenerative diseases, e.g., in Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s disease (HD), as well as in ischemic stroke. In vivo and ex vivo experiments using animal models of aging and AD, PD, and HD mainly showed improvement of mitochondrial function after treatment with polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA). Thereby, PUFA are particular beneficial in animals treated with mitochondria targeting toxins. However, DHA showed adverse effects in a transgenic PD mouse model and it is not clear if a diet high or low in PUFA might provide neuroprotective effects in PD. Post-treatment with PUFA revealed conflicting results in ischemic animal models, but intravenous administered DHA provided neuroprotective efficacy after acute occlusion of the middle cerebral artery. In summary, the majority of preclinical data indicate beneficial effects of n-3 PUFA in neurodegenerative diseases, whereas most controlled clinical trials did not meet the expectations. Because of the high half-life of DHA in the human brain clinical studies may have to be initiated much earlier and have to last much longer to be more efficacious. 相似文献
15.
Marangell LB Suppes T Ketter TA Dennehy EB Zboyan H Kertz B Nierenberg A Calabrese J Wisniewski SR Sachs G 《Prostaglandins, leukotrienes, and essential fatty acids》2006,75(4-5):315-321
Several lines of evidence suggest that omega-3 fatty acids may be important in the pathophysiology, treatment or prevention of bipolar disorder (BD). Electronic and manual searches were conducted in order to review the literature relevant to the etiology and treatment of BDs with omega-3 fatty acids. We also present data from a randomized, double-blind, placebo-controlled pilot study conducted at three sites (N = 10) comparing an omega-3 fatty acid (docosahexaenoic acid, DHA) versus placebo, added to psychosocial treatment for women with BD who chose to discontinue standard pharmacologic treatment while attempting to conceive. While some epidemiologic and preclinical data support the role of omega-3 fatty acids in BD, clinical trials to date have yielded conflicting results. In our pilot study of 10 Caucasian women taking DHA while attempting to conceive (BP1 = 9, BPII = 1), age 27-42 years, DHA was well tolerated and suggests that a larger study would be feasible. The elucidation of the potential role of omega-3 fatty acids as a treatment for BD requires further study. The current data are not sufficient to support a recommendation of monotherapy treatment as a substitute for standard pharmacologic treatments. However, judicious monotherapy in selected clinical situations, or adjunctive use, may be warranted pending further data from adequately powered controlled clinical trials. Our pilot trial of DHA in women who plan to stop conventional psychotropics in order to conceive suggests that such trials are feasible. 相似文献
16.
Omega-3 fatty acids and antioxidants in edible wild plants 总被引:2,自引:0,他引:2
Simopoulos AP 《Biological research》2004,37(2):263-277
Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources. 相似文献
17.
Omega-3 fatty acids from fish oils and cardiovascular disease 总被引:10,自引:0,他引:10
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004) 相似文献
18.
Larson MK Shearer GC Ashmore JH Anderson-Daniels JM Graslie EL Tholen JT Vogelaar JL Korth AJ Nareddy V Sprehe M Harris WS 《Prostaglandins, leukotrienes, and essential fatty acids》2011,84(3-4):93-98
Dietary intake of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) results in cardioprotective benefits. However, the cellular and physiological bases for these benefits remain unclear. We hypothesized that EPA and DHA treatments would interfere with collagen-mediated platelet signaling. Thirty healthy volunteers received 28 days of 3.4 g/d EPA+DHA with and without a single dose of aspirin. Clinical hematologic parameters were then measured along with assays of collagen-stimulated platelet activation and protein phosphorylation. Omega-3 therapy led to a small but significant reduction in platelets (6.3%) and red blood cells (1.7%), but did not impair clinical time-to-closure assays. However, collagen-mediated platelet signaling events of integrin activation, α-granule secretion, and phosphatidylserine exposure were all reduced by roughly 50% after omega-3 incorporation, and collagen-induced tyrosine phosphorylation was significantly impaired. The diminished platelet response to collagen may account for some of the cardioprotective benefits provided by DHA and EPA. 相似文献
19.
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms. 相似文献
20.
Im DS 《Progress in lipid research》2012,51(3):232-237
Omega-3 fatty acids, such as, DHA and EPA, have well established beneficial effects on human health, but their action mechanisms remain unknown. Recent pharmacological studies have suggested several molecular targets for the anti-inflammatory effects of omega-3 fatty acids, namely, nuclear receptor PPARγ and the G protein-coupled receptor GPR120. Furthermore, the conversions of omega-3 fatty acids to anti-inflammatory and pro-resolving resolvins and protectins and the identifications of putative target GPCRs, ChemR23, BLT?, ALX/FPR2, and GPR32, have drawn great attention. In addition, the pharmacology of omega-3 fatty acids is now under scrutiny. However, questions remain to be answered regarding the in vivo effects of omega-3 fatty acids at the molecular level. In this review, anti-inflammatory effects of omega-3 fatty acids are discussed from the viewpoint of molecular pharmacology, particularly with respect to the above-mentioned GPCRs. 相似文献