共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rathouz PJ 《Biostatistics (Oxford, England)》2007,8(2):345-356
Methods in the literature for missing covariate data in survival models have relied on the missing at random (MAR) assumption to render regression parameters identifiable. MAR means that missingness can depend on the observed exit time, and whether or not that exit is a failure or a censoring event. By considering ways in which missingness of covariate X could depend on the true but possibly censored failure time T and the true censoring time C, we attempt to identify missingness mechanisms which would yield MAR data. We find that, under various reasonable assumptions about how missingness might depend on T and/or C, additional strong assumptions are needed to obtain MAR. We conclude that MAR is difficult to justify in practical applications. One exception arises when missingness is independent of T, and C is independent of the value of the missing X. As alternatives to MAR, we propose two new missingness assumptions. In one, the missingness depends on T but not on C; in the other, the situation is reversed. For each, we show that the failure time model is identifiable. When missingness is independent of T, we show that the naive complete record analysis will yield a consistent estimator of the failure time distribution. When missingness is independent of C, we develop a complete record likelihood function and a corresponding estimator for parametric failure time models. We propose analyses to evaluate the plausibility of either assumption in a particular data set, and illustrate the ideas using data from the literature on this problem. 相似文献
3.
The problem of dropout is a common one in longitudinal studies. One usually assumes for the analysis that dropout is at random. There are some tests to investigate this assumption. But these tests depend on normally distributed data or lack power, cf. Listing and Schlittgen (1998). We here propose an overall test which combines several Wilcoxon rank sum tests. The alternative hypothesis states that there is a tendency for larger (smaller) values of the target variable the last time the probands show up. The test is applicable with many ties also. It proves to perform well, compared to the test developed for normally distributed data, as well as to a test for completely missing at random which is proposed by Little (1988). An application to real data is given too. 相似文献
4.
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data. 相似文献
5.
6.
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. 相似文献
7.
8.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children. 相似文献
9.
It is very common in regression analysis to encounter incompletely observed covariate information. A recent approach to analyse such data is weighted estimating equations (Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994), JASA, 89, 846-866, and Zhao, L. P., Lipsitz, S. R. and Lew, D. (1996), Biometrics, 52, 1165-1182). With weighted estimating equations, the contribution to the estimating equation from a complete observation is weighted by the inverse of the probability of being observed. We propose a test statistic to assess if the weighted estimating equations produce biased estimates. Our test statistic is similar to the test statistic proposed by DuMouchel and Duncan (1983) for weighted least squares estimates for sample survey data. The method is illustrated using data from a randomized clinical trial on chemotherapy for multiple myeloma. 相似文献
10.
Thijs H Molenberghs G Michiels B Verbeke G Curran D 《Biostatistics (Oxford, England)》2002,3(2):245-265
Whereas most models for incomplete longitudinal data are formulated within the selection model framework, pattern-mixture models have gained considerable interest in recent years (Little, 1993, 1994). In this paper, we outline several strategies to fit pattern-mixture models, including the so-called identifying restrictions strategy. Multiple imputation is used to apply this strategy to realistic settings, such as quality-of-life data from a longitudinal study on metastatic breast cancer patients. 相似文献
11.
Longitudinal data analysis using generalized linear models 总被引:186,自引:0,他引:186
12.
13.
14.
Liang H 《Biometrical journal. Biometrische Zeitschrift》2005,47(3):358-368
To analyze responses of solid tumors to treatment with antitumor therapy, we applied nonparametric mixed-effects models to investigate tumor volumes measured over a fixed. The population and individual response functions were approximated by penalized splines. Linear mixed-effects modeling was applied in the implementation of the estimation. We applied the approach to an analysis of a real xenograft study of a new antitumor agent, temozolomide, combined with irinotecan. The model fitted the data very well. We conducted a sensitivity analysis to determine the effect of informative dropout. We also propose an intuitive approach to a comparison of the antitumor effects of two different treatments. Biological interpretations and clinical implications are discussed. 相似文献
15.
16.
17.
Analyzing incomplete longitudinal clinical trial data 总被引:1,自引:0,他引:1
Molenberghs G Thijs H Jansen I Beunckens C Kenward MG Mallinckrodt C Carroll RJ 《Biostatistics (Oxford, England)》2004,5(3):445-464
Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations, it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial data, such as complete case analyses and methods based on last observation carried forward, require restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based methods developed under the missing at random (MAR) framework. Given the availability of flexible software for analyzing longitudinal sequences of unequal length, implementation of likelihood-based MAR analyses is not limited by computational considerations. While such analyses are valid under the comparatively weak assumption of MAR, the possibility of data missing not at random (MNAR) is difficult to rule out. It is argued, however, that MNAR analyses are, themselves, surrounded with problems and therefore, rather than ignoring MNAR analyses altogether or blindly shifting to them, their optimal place is within sensitivity analysis. The concepts developed here are illustrated using data from three clinical trials, where it is shown that the analysis method may have an impact on the conclusions of the study. 相似文献
18.
Geert Molenberghs Bart Michiels Michael G. Kenward 《Biometrical journal. Biometrische Zeitschrift》1998,40(5):557-572
In this paper we develop pseudo-likelihood methods for the estimation of parameters in a model that is specified in terms of both selection modelling and pattern-mixture modelling quantities. Two cases are considered: (1) the model is specified directly from a joint model for the measurement and dropout processes; (2) conditional models for the measurement process given dropout and vice versa are specified directly. In the latter case, compatibility constraints to ensure the existence of a joint density are derived. The method is applied to data from a psychiatric study, where a bivariate therapeutic outcome is supplemented with covariate information. 相似文献
19.
Summary . Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models. 相似文献
20.