首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis.Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation.An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients.Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.  相似文献   

2.
3.
Axonal defects in mouse models of motoneuron disease   总被引:4,自引:0,他引:4  
Human motoneuron disease is characterized by loss of motor endplates, axonal degeneration, and cell death of motoneurons. The identification of the underlying gene defects for familial ALS, spinal muscular atrophy (SMA), and spinal muscular atrophy with respiratory distress (SMARD) has pointed to distinct pathophysiological mechanisms that are responsible for the various forms of the disease. Accumulating evidence from mouse models suggests that enhanced vulnerability and sensitivity to proapoptotic stimuli is only responsible for some but not all forms of motoneuron disease. Mechanisms that modulate microtubule assembly and the axonal transport machinery are defective in several spontaneous and ENU (ethylnitrososurea) mutagenized mouse models but also in patients with mutations in the p150 subunit of dynactin. Recent evidence suggests that axonal growth defects contribute significantly to the pathophysiology of spinal muscular atrophy. Reduced levels of the survival motoneuron protein that are responsible for SMA lead to disturbed RNA processing in motoneurons. This could also affect axonal transport of mRNAs for beta-actin and other proteins that play an essential role in axon growth and synaptic function. The local translation of specific proteins might be affected, because developing motoneurons contain ribosome-like structures in distal axons and growth cones. Altogether, the evidence from these mouse models and the new genetic data from patients suggest that axon growth and maintenance involves a variety of mechanisms, including microtubule assembly and axonal transport of proteins and ribonucleoproteins (RNPs). Thus, defects in axon maintenance could play a leading role in the development of several forms of human motoneuron disease.  相似文献   

4.
Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age‐related and brain region‐specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP‐transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP‐transgenic mouse and one APP‐transgenic rat model. We observed remarkable differences in expression levels and brain region‐specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP‐transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals.  相似文献   

5.
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.  相似文献   

6.
《遗传学报》2022,49(4):364-376
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models. In both mouse models, the diabetic phenotypes, including hyperglycemia, impaired glucose tolerance, and insulin sensitivity, were ameliorated after two or four weeks of intraperitoneal administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist ten days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro. Furthermore, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.  相似文献   

7.
8.
BackgroundMitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).Scope of reviewThis paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.Major conclusionsSeveral mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.General significanceMouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.  相似文献   

9.
Maintaining proteostasis is thought to be a key factor in slowed aging. In several growth‐restricted models of long‐life, we have shown evidence of increased proteostatic mechanisms, suggesting that proteostasis may be a shared characteristic of slowed aging. The Snell dwarf mouse is generated through the mutation of the Pit‐1 locus causing reductions in multiple hormonal growth factors and mTORC1 signaling. Snell dwarfs are one of the longest lived rodent models of slowed aging. We hypothesized that proteostatic mechanisms would be increased in Snell compared to control (Con) as in other models of slowed aging. Using D2O, we simultaneously assessed protein synthesis in multiple subcellular fractions along with DNA synthesis in skeletal muscle, heart, and liver over 2 weeks in both sexes. We also assessed mTORC1‐substrate phosphorylation. Skeletal muscle protein synthesis was decreased in all protein fractions of Snell compared to Con, varied by fraction in heart, and was not different between groups in liver. DNA synthesis was lower in Snell skeletal muscle and heart but not in liver when compared to Con. The new protein to new DNA synthesis ratio was increased threefold in Snell skeletal muscle and heart compared to Con. Snell mTORC1‐substrate phosphorylation was decreased only in heart and liver. No effect of sex was seen in this study. Together with our previous investigations in long‐lived models, we provide evidence further supporting proteostasis as a shared characteristic of slowed aging and show that increased proteostatic mechanisms may not necessarily require a decrease in mTORC1.  相似文献   

10.
Abstract

Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell–cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell–cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell–cell junction-based diseases that exhibit CCS electrophysiological defects.  相似文献   

11.

Background  

Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo.  相似文献   

12.
Cell cycle events have been documented to be associated with several human neurodegenerative diseases. This review focuses on two diseases--Alzheimer's disease and ataxia telangiectasia--as well as their mouse models. Cell cycle studies have shown that ectopic expression of cell cycle markers is spatially and regional correlated well with neuronal cell death in both disease conditions. Further evidence of ectopic cell cycling is found in both human diseases and in its mouse models. These findings suggest that loss of cell cycle control represents a common pathological root of disease, which underlies the defects in the affected brain tissues in both human and mouse. Loss of cell cycle control is a unifying hypothesis for inducing neuronal death in CNS. In the disease models we have examined, cell cycle markers appear before the more well-recognized pathological changes and thus could serve as early stress markers--outcome measures for preclinical trials of potential disease therapies. As a marker these events could serve as a new criterion in human pathological diagnosis. The evidence to date is compatible with the requirement for a second "hit" for a neuron to progress cell cycle initiation and DNA replication to death. If this were true, any intervention of blocking 'second' processes might prevent or slow the neuronal cell death in the process of disease. What is not known is whether, in an adult neuron, the cell cycle event is part of the pathology or rather a desperate attempt of a neuron under stress to protect itself.  相似文献   

13.
Genetically engineered mouse models offer essential opportunities to investigate the mechanisms of initiation and progression in melanoma. Here, we report a new simplified histopathology classification of mouse melanocytic lesions in Tyr::NRASQ61K derived models, using an interactive decision tree that produces homogeneous categories. Reproducibility for this classification system was evaluated on a panel of representative cases of murine melanocytic lesions by pathologists and basic scientists. Reproducibility, measured as inter‐rater agreement between evaluators using a modified Fleiss’ kappa statistic, revealed a very good agreement between observers. Should this new simplified classification be adopted, it would create a robust system of communication between researchers in the field of mouse melanoma models.  相似文献   

14.
Sleep and circadian disruptions are commonly reported by patients with neurodegenerative diseases, suggesting these may be an endophenotype of the disorders. Several mouse models of Huntington’s disease (HD) that recapitulate the disease progression and motor dysfunction of HD also exhibit sleep and circadian rhythm disruption. Of these, the strongest effects are observed in the transgenic models with multiple copies of mutant huntingtin gene. For developing treatments of the human disease, knock-in (KI) models offer advantages of genetic precision of the insertion and control of mutation copy number. Therefore, we assayed locomotor activity and immobility-defined sleep in a new model of HD with an expansion of the KI repeats (Q175). We found evidence for gene dose- and age-dependent circadian disruption in the behavior of the Q175 line. We did not see evidence for loss of cells or disruption of the molecular oscillator in the master pacemaker, the suprachiasmatic nucleus (SCN). The combination of the precise genetic targeting in the Q175 model and the observed sleep and circadian disruptions make it tractable to study the interaction of the underlying pathology of HD and the mechanisms by which the disruptions occur.  相似文献   

15.
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age‐related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age‐associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high‐resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression.  相似文献   

16.
The agnostic screening performed by genome-wide association studies (GWAS) has uncovered associations for previously unsuspected genes. Knowledge about the functional role of these genes is crucial and laboratory mouse models can provide such information. Here, we describe a systematic juxtaposition of human GWAS-discovered loci versus mouse models in order to appreciate the availability of mouse models data, to gain biological insights for the role of these genes and to explore the extent of concordance between these two lines of evidence. We perused publicly available data (NHGRI database for human associations and Mouse Genome Informatics database for mouse models) and employed two alternative approaches for cross-species comparisons, phenotype- and gene-centric. A total of 293 single gene-phenotype human associations (262 unique genes and 69 unique phenotypes) were evaluated. In the phenotype-centric approach, we identified all mouse models and related ortholog genes for the 51 human phenotypes with a comparable phenotype in mice. A total of 27 ortholog genes were found to be associated with the same phenotype in humans and mice, a concordance that was significantly larger than expected by chance (p<0.001). In the gene-centric approach, we were able to locate at least 1 knockout model for 60% of the 262 genes. The knockouts for 35% of these orthologs displayed pre- or post-natal lethality. For the remaining non-lethal orthologs, the same organ system was involved in mice and humans in 71% of the cases (p<0.001). Our project highlights the wealth of available information from mouse models for human GWAS, catalogues extensive information on plausible physiologic implications for many genes, provides hypothesis-generating findings for additional GWAS analyses and documents that the concordance between human and mouse genetic association is larger than expected by chance and can be informative.  相似文献   

17.
The first gene to be linked to Parkinson's disease encodes the neuronal protein alpha-synuclein. Recent mouse and Drosophila models of Parkinson's disease support a central role for the process of alpha-synuclein fibrillization in pathogenesis. However, some evidence indicates that the fibril itself may not be the pathogenic species. Our own biophysical studies suggest that a structured fibrillization intermediate or an alternatively assembled oligomer may be responsible for neuronal death. This speculation can now be experimentally tested in the animal models. Such experiments will have implications for the development of new therapies for Parkinson's disease and related neurodegenerative diseases.  相似文献   

18.
Parkinson disease (PD) is a common and disabling disorder. No current therapy can slow or reverse disease progression. An important aspect of research in this field is target validation, a systematic approach to evaluating the likelihood that modification of a certain molecule, mechanism or biological pathway may be useful for the development of pharmacological or molecular treatments for the disease. TorsinA, a member of the AAA+ family of chaperone proteins, has been proposed as a potential target of neuroprotective therapy. TorsinA is found in Lewy bodies in human PD, and can suppress toxicity in cellular and invertebrate models of PD. Here, we evaluated the neuroprotective properties of torsinA in mouse models of PD based on intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as recombinant adeno associated virus (rAAV) induced overexpression of alpha-synuclein (α-syn). Using either transgenic mice with overexpression of human torsinA (hWT mice) or mice in which torsinA expression was induced using an rAAV vector, we found no evidence for protection against acute MPTP intoxication. Similarly, genetic deletion of the endogenous mouse gene for torsinA (Dyt1) using an rAAV delivered Cre recombinase did not enhance the vulnerability of dopaminergic neurons to MPTP. Overexpression of α-syn using rAAV in the mouse substantia nigra lead to a loss of TH positive neurons six months after administration, and no difference in the degree of loss was observed between transgenic animals expressing forms of torsinA and wild type controls. Collectively, we did not observe evidence for a protective effect of torsinA in the mouse models we examined. Each of these models has limitations, and there is no single model with established predictive value with respect to the human disease. Nevertheless, these data do seem to support the view that torsinA is unlikely to be successfully translated as a target of therapy for human PD.  相似文献   

19.
Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge.  相似文献   

20.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NFκB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.Key words: p53, polymorphism, apoptosis, codon 72, NFκB  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号