首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
HO  L. C. 《Annals of botany》1978,42(1):155-164
Rates of carbon transport from a single mature tomato leaf inthe light period (day transport) and the dark period (nighttransport) were estimated from the rate of carbon fixation inthe light period, the rate of respiration in the dark periodand the changes in carbon contents over these two periods. Plantswere grown initially at 40 W m–2 light intensity witheither 350 vpm (nonenriched plants) or 1000 vpm CO2 (enrichedplants). Various light flux densities or CO2 concentrationswere then applied to the experimental leaves in the light periodduring the experiment When leaves were temporarily exposed to contrasting light fluxdensities both day transport and night transport were linearlyrelated to the rate of carbon fixation. If leaves were shadedbelow the light compensation point for up to five days, or transferredto contrasting CO2 concentrations for up to ten days, the linearrelationship between carbon fixation and carbon transport nolonger held. During acclimatization, therate of wbon fixationwas simply related to thecurrent light flux density and CO2concentration, but the rate of carbon transport changed withtime. Day and night transports responded differently to changesin environment: night transport was more related to the contentof reserve, particularly starch, than to the rate of concurrentwbon fixation. It is concluded that the rate of carbon transport of a maturetomato leaf in a single photoperiod is regulated not merelyby the rate of concurrent carbon fixation but by the contentof reserve in the leaf. The latter results from previous cumulativewbon fixation and carbon transport. As a result of changingthe rate of carbon transport, a balance of carbon input andoutput was achieved within 10 days of acclimatization in a maturetomato leaf.  相似文献   

2.
CO2 concentrations of 1000 compared to 350 microliters per liter in controlled environment chambers did not increase total fruit weight or number in a monoecious cucumber (Cucumis sativus L. cv Chipper) nor did it increase biomass, leaf area, or relative growth rates beyond the first 16 days after seeding. Average fruit weight was slightly, but not significantly greater in the 1000 microliters per liter CO2 treatment because fruit numbers were changed more than total weight. Plants grown at 1000 and 350 microliters per liter CO2 were similar in distribution of dry matter and leaf area between mainstem, axillary, and subaxillary branches. Early flower production was greater in 1000 microliters per liter plants. Subsequent flower numbers were either lower in enriched plants or similar in the two treatments, except for the harvest at fruiting when enriched plants produced many more male flowers than the 350 microliters per liter treatments.  相似文献   

3.
Control coefficients were used to describe the degree to which ribulose bisphosphate carboxylase/oxygenase (Rubisco) limits the steady-state rate of CO2 assimilation in sunflower leaves from plants grown at high (800 μmol mol−1) and low (350 μmol mol−1) CO2. The magnitude of a control coefficient is approximately the percentage change in the flux that would result from a 1% rise in enzyme active site concentration. In plants grown at low CO2, leaves of different ages varied considerably in their photosynthetic capacities. In a saturating light flux and an ambient CO2 concentration of 350 μmol mol−1, the Rubisco control coefficient was about 0.7 in all leaves, indicating that Rubisco activity largely limited the assimilation flux. The Rubisco control coefficient for leaves grown at 350 μmol mol−1 CO2 dropped to about zero when the ambient CO2 concentration was raised to 800 μmol mol−1. In relatively young, fully expanded leaves of plants grown at high CO2, the Rubisco control coefficient was also about 0.7 at a saturating light flux and at the CO2 concentration at which the plants were grown (800 μmol mol−1). This apparently resulted from a decrease in the concentration of Rubisco active sites. In older leaves, however, the control coefficient was about 0.2. Because, on the whole, Rubisco activity still largely limits the assimilation flux in plants grown at high CO2, the kinetics of this enzyme can still be used to model photosynthesis under these conditions. The relatively high Rubisco control coefficient under enhanced CO2 indicates that the young sunflower leaves have the capacity to acclimate their photosynthetic biochemistry in a way consistent with an optimal use of protein resources.  相似文献   

4.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

5.
Transpiration rates of potted spray carnation plants Cerise Royalette decreased about 0.04% per vpm CO2 between ambient atmospheric CO2 concentration and 1500 vpm CO2 at several light flux densities and leaf temperatures. Measurements of daily water losses of potted spray carnation plants placed under high solar radiation conditions in two minigreenhouses with 300 and 5000 vpm CO2 demonstrated that elevated CO2 concentrations reduced water losses by 20–30%. The effect of the increase in global CO2 concentration on stomatal closure was calculated to have decreased the yearly transpiration rate of an outdoor crop by 1.6% in this century and is expected to cause a decrease of 10% within the next 50 years if all other factors remain unchanged. From a model of CO2 uptake of carnation plants it was calculated that the expected water use efficiency (net photosynthesis rate/transpiration rate) will increase by about 40–50% over the next 50 years due to the expected increase in global CO2 concentration.Contribution No. 205-E, 1979 series.Presented at the Eighth International Congress of Biometeorology 8–14 September 1979, Shefayim, Israel.  相似文献   

6.
Among plants grown under enriched atmospheric CO2, root:shoot balance (RSB) theory predicts a proportionately greater allocation of assimilate to roots than among ambient‐grown plants. Conversely, defoliation, which decreases the plant's capacity to assimilate carbon, is predicted to increase allocation to shoot. We tested these RSB predictions, and whether responses to CO2 enrichment were modified by defoliation, using Heterotheca subaxillaris, an annual plant native to south‐eastern USA. Plants were grown under near‐ambient (400 μmol mol?1) and enriched (700 μmol mol?1) levels of atmospheric CO2. Defoliation consisted of the weekly removal of 25% of each new fully expanded, but not previously defoliated, leaf from either rosette or bolted plants. In addition to dry mass measurements of leaves, stems, and roots, Kjeldahl N, protein, starch and soluble sugars were analysed in these plant components to test the hypothesis that changes in C:N uptake ratio drive shifts in root:shoot ratio. Young, rapidly growing CO2‐enriched plants conformed to the predictions of RSB, with higher root:shoot ratio than ambient‐grown plants (P < 0.02), whereas older, slower growing plants did not show a CO2 effect on root:shoot ratio. Defoliation resulted in smaller plants, among which both root and shoot biomass were reduced, irrespective of CO2 treatment (P < 0.03). However, H. subaxillaris plants were able to compensate for leaf area removal through flexible shoot allocation to more leaves vs. stem (P < 0.01). Increased carbon availability through CO2 enrichment did not enhance the response to defoliation, apparently because of complete growth compensation for defoliation, even under ambient conditions. CO2‐enriched plants had higher rates of photosynthesis (P < 0.0001), but this did not translate into increased final biomass accumulation. On the other hand, earlier and more abundant yield of flower biomass was an important consequence of growth under CO2 enrichment.  相似文献   

7.
Mousseau  M. 《Plant Ecology》1993,104(1):413-419
Two year old sweet chestnut seedlings (Castanea sativa Mill) were grown in pots at ambient (350 µmol·mol–1) and double (700 µmol·mol–1) atmospheric CO2 concentration in constantly ventilated greenhouses during entire growing seasons. CO2 enrichment caused either no significant change or a decrease in shoot response, depending on yearly weather conditions. Similarly, leaf area was either reduced or unchanged under elevated CO2. However, when grown under controlled conditions in a growth chamber, leaf area was enlarged with elevated CO2.The CO2 exchanges of whole plants were measured during the growing season. In elevated CO2, net photosynthetic rate was maximum in May and then decreased, reaching the level of the control at the end of the season. End of night dark respiration of enriched plants was significantly lower than that of control plants; this difference decreased with time and became negligible in the fall. The original CO2 level acted instantaneously on the respiration rate: a double concentration in CO2 decreased the respiration of control plants and a reduced concentration enhanced the respiration of enriched plants. The carbon balance of a chestnut seedling may then be modified in elevated CO2 by increased carbon inputs and decreased carbon outputs.  相似文献   

8.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   

9.
Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO2 decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO2 than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO2 grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO2 could explain the lack of any yield increase (MM Peet 1986 Plant Physiol 80: 59-62) when compared with plants grown at 350 microliters per liter.  相似文献   

10.
The effect of long-term exposure to elevated levels of CO2 on biomass partitioning, net photosynthesis and starch metabolism was examined in cotton. Plants were grown under controlled conditions at 350, 675 and 1000 l l-1 CO2. Plants grown at 675 and 1000 l l-1 had 72% and 115% more dry weight respectively than plants grown at 350 l l-1. Increases in weight were partially due to corresponding increases in leaf starch. CO2 enrichment also caused a decrease in chlorophyll concentration and a change in the chlorophyll a/b ratio. High CO2 grown plants had lower photosynthetic capacity than 350 l l-1 grown plants when measured at each CO2 concentration. Reduced photosynthetic rates were correlated with high internal (non-stomatal) resistances and higher starch levels. It is suggested that carbohydrate accumulation causes a decline in photosynthesis by feedback inhibition and/or physical damage at the chloroplast level.Abbreviations Ci internal CO2 concentration - Chl chlorophyll - DMSO dimethylsulfoxide - HSD honestly significant difference (procedure) - MCW methanolchloroform-water - Pi inorganic phosphate - S.E.M. standard error of mean  相似文献   

11.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   

12.
Leaves of soybean plants grown in contrasting light and nutrient availability conditions were exposed to constant and to flashing light regimes with lightflecks of different frequencies, durations and photon flux density (PFD). The lightfleck characteristics were selected to be representative of the range of variation found for sunflecks in a soybean canopy. CO2 fixation rates were measured using a fast-response gas-exchange apparatus. The net CO2 fixation due to 1-s-duration lightflecks was 1·3 times higher than predicted from steady-state measurements in constant light at the lightfleck and background PFD. This lightfleck utilization efficiency (LUE) was somewhat higher at a high than at a low frequency of one second lightflecks. LUE in flashing light with very short lightflecks (0·2s) and single 1 s lightflecks was as high as 2, but decreased sharply with increasing duration of lightflecks. This decrease occurred because CO2 fixation rates during lightflecks were constrained by carbon metabolism and induction limitations, and because the contribution of post-illumination CO2 fixation to total CO2 fixation decreased with increased duration of lightflecks. LUE increased with increased PFD during the lightflecks, particularly in leaves from plants grown in high-light, high-nutrient conditions. Saturation PFDs were much higher in flashing light than in constant light. Only small differences in LUE were apparent between leaves from the three growth conditions.  相似文献   

13.
Experiments were conducted in controlled growth chambers to evaluate how increase in CO2 concentration affected sucrose metabolizing enzymes, especially sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13), as well as carbon metabolism and partitioning in a tropical epiphytic orchid species (Oncidium goldiana). Response of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) to elevated CO2 was determined along with dry mass production, photosynthesis rate, chlorophyll content, total nitrogen and total soluble protein content. After 60 days of growth, there was a 80% and 150% increase in dry mass production in plants grown at 750 and 1 100 μl l?1 CO2, respectively, compared with those grown at ambient CO2 (about 370 μl l?1). A similar increase in photosynthesis rate was detected throughout the growth period when measured under growth CO2 conditions. Concomitantly, there was a decline in leaf Rubisco activity in plants in elevated CO2 after 10 days of growth. Over the growth period, leaf SPS and SS activities were up‐regulated by an average of 20% and 40% for plants grown at 750 and 1100 μl l?1 CO2, respectively. Leaf sucrose content and starch content were significantly higher throughout the growth period in plants grown at elevated CO2 than those at ambient CO2. The partitioning of photosynthetically fixed carbon between sucrose and starch appeared to be unaffected by the 750 μl l?1 CO2 treatment, but it was favored into starch under the 1 100 μl l?1 CO2 condition. The activities of SPS and SS in leaf extracts were closely associated with photosynthetic rates and with partitioning of carbon between starch and sucrose in leaves. The data are consistent with the hypothesis that the up‐regulation of leaf SPS and SS might be an acclimation response to optimize the utilization and export of organic carbon with the increased rate of inorganic‐carbon fixation in elevated CO2 conditions.  相似文献   

14.
The effects of atmospheric CO2 enrichment and root restriction on photosynthetic characteristics and growth of banana (Musa sp. AAA cv. Gros Michel) plants were investigated. Plants were grown aeroponically in root chambers in controlled environment glasshouse rooms at CO2 concentrations of 350 or 1 000 μmol CO2 mol-1. At each CO2 concentration, plants were grown in large (2001) root chambers that did not restrict root growth or in small (20 1) root chambers that restricted root growth. Plants grown at 350 μmol CO2 mol-1 generally had a higher carboxylation efficiency than plants grown at 1 000 μmol CO2 mol-1 although actual net CO2 assimilation (A) was higher at the higher ambient CO2 concentration due to increased intercellular CO2 concentrations (Ci resulting from CO2 enrichment. Thus, plants grown at 1 000 μmol CO2 mol-1 accumulated more leaf area and dry weight than plants grown at 350 μmol CO2 mol-1. Plants grown in the large root chambers were more photosynthetically efficient than plants grown in the small root chambers. At 350 μmol CO2 mol-1, leaf area and dry weights of plant organs were generally greater for plants in the large root chambers compared to those in the small root chambers. Atmospheric CO2 enrichment may have compensated for the effects of root restriction on plant growth since at 1 000 μmol CO2 mol-1 there was generally no effect of root chamber size on plant dry weight.  相似文献   

15.
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about ‐2.5°C to +2.5°C from outside temperatures) maintained at either 374 or 532 μmol mol?1 CO2. Plant leaf area was determined non‐destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light‐saturated rates of leaf photosynthesis (Asat) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C1/C3 ratio) was 7.4% less for plants grown at elevated compared with normal CO2. Asat in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C1. Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field‐grown crops.  相似文献   

16.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

17.
 Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67–71 days under ambient CO2 (35 Pa) and elevated CO2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N2 fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO2 plants indicating that more carbon was available for transport to nodules. A 14CO2 pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO2. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO2, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO2. These results suggest that Gliricidia, and possibly other N2-fixing trees, may show an early and positive growth response to elevated CO2, even in severely N-deficient soils, due to increased nitrogenase activity. Received: 27 February 1996 / Accepted: 19 June 1996  相似文献   

18.
During the period of most active leaf expansion, the foliar dark respiration rate of soybeans (Glycine max cv Williams), grown for 2 weeks in 1000 microliters CO2 per liter air, was 1.45 milligrams CO2 evolved per hour leaf density thickness, and this was twice the rate displayed by leaves of control plants (350 microliters CO2 per liter air). There was a higher foliar nonstructural carbohydrate level (e.g. sucrose and starch) in the CO2 enriched compared with CO2 normal plants. For example, leaves of enriched plants displayed levels of nonstructural carbohydrate equivalent to 174 milligrams glucose per gram dry weight compared to the 84 milligrams glucose per gram dry weight found in control plant leaves. As the leaves of CO2 enriched plants approached full expansion, both the foliar respiration rate and carbohydrate content of the CO2 enriched leaves decreased until they were equivalent with those same parameters in the leaves of control plants. A strong positive correlation between respiration rate and carbohydrate content was seen in high CO2 adapted plants, but not in the control plants.

Mitochondria, isolated simultaneously from the leaves of CO2 enriched and control plants, showed no difference in NADH or malate-glutamate dependent O2 uptake, and there were no observed differences in the specific activities of NAD+ linked isocitrate dehydrogenase and cytochrome c oxidase. Since the mitochondrial O2 uptake and total enzyme activities were not greater in young enriched leaves, the increase in leaf respiration rate was not caused by metabolic adaptations in the leaf mitochondria as a response to long term CO2 enrichment. It was concluded, that the higher respiration rate in the enriched plant's foliage was attributable, in part, to a higher carbohydrate status.

  相似文献   

19.
Besford  R. T. 《Plant Ecology》1993,(1):441-448
The effects of prolonged CO2 enrichment of tomato plants on photosynthetic performance and Calvin cycle enzymes, including the amount and activity of ribulose-1,5-bisphosphate carboxylase (RuBPco), were determined. Also the light-saturated rate of photosynthesis (Pmax) of the 5th leaf throughout leaf development was predicted based on the amount and kinetics of RuBPco. With short-term CO2 enrichment, i.e. only during the photosynthesis measurements, Pmax of the young leaves did not increase while the leaves reaching full expansion more than doubled their net rate of CO2 fixation. However, with longer-term CO2 enrichment, i.e. growing the crop in high CO2, the plants did not maintain this photosynthetic gain. Compared with leaves of plants grown in normal ambient CO2 the high CO2-grown leaves, when almost fully expanded, contained only about half as much RuBPco protein and Pmax in 300 and 1000 vpm CO2 was similarly reduced.The loss of RuBPco protein may be a factor associated with the accelerated fall in Pmax since Pmax was close to that predicted from the amount and kinetics of RuBPco assuming RuBP saturation. Acclimation to high CO2 is fundamentally different from acclimation to high light. In contrast to acclimation to high light, acclimation to high CO2 does not usually involve an increase in photosynthetic machinery so the synthesis and maintenance costs (as indicated by the dark respiration rate) are generally lower.  相似文献   

20.
Mesophyll cells from leaves of cowpea (Vigna unquiculata [L.] Walp.) plants grown under saline conditions were isolated and used for the determination of photosynthetic CO2 fixation. Maximal CO2 fixation rate was obtained when the osmotic potential of both cell isolation and CO2 fixation assay media were close to leaf osmotic potential, yielding a zero turgor pressure. Hypotonic and hypertonic media decreased the rate of photosynthesis regardless of the salinity level during plant growth. No decrease in photosynthesis was obtained for NaCl concentrations up to 87 moles per cubic meter in the plant growing media and only a 30% decrease was found at 130 moles per cubic meter when the osmotic potential of cell isolation and CO2 fixation media were optimal. The inhibition was reversible when stress was relieved. At 173 moles per cubic meter NaCl, photosynthesis was severely and irreversibly inhibited. This inhibition was attributed to toxic effects caused by high Cl and Na+ accumulation in the leaves. Uptake of sorbitol by intact cells was insignificant, and therefore not associated with cell volume changes. The light response curve of cells from low salinity grown plants was similar to the controls. Cells from plants grown at 173 moles per cubic meter NaCl were light saturated at a lower radiant flux density than were cells from lower salinity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号