首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of ten enzymes involved in sialic acid metabolism were measured in colonic mucosal cells from rats and compared with those in liver. A methodology was devised that enabled all ten enzyme activities to be evaluated in a single rat colon preparation. Enzyme assays with radioactively labelled substrates were developed for maximum sensitivity, and the identification of substrates and products was carefully checked to assess the contribution of contaminants to enzyme reactions with low activity. The activities of most enzymes involved in the biosynthesis of N-acetyl-D-neuraminic acid (NeuAc) from UDP-N-acetyl-D-glucosamine were found to be more than 20-fold lower than those in liver. The activities of CMP-NeuAc synthase, N-acetyl-D-glucosamine 2-epimerase, N-acetyl-D-glucosamine kinase, sialyltransferase and sialidase were similar to or 2-4-fold lower than in liver. The biosynthesis of NeuAc via its 9-phosphate was demonstrated in the 100 000 g supernatant of colonic-cell homogenates by enzymic assay and precursor experiments with N-acetyl[14C]-mannosamine. No alternative route for NeuAc formation could be detected. The 100 000g supernatant fractions of liver, kidney and colonic mucosal cells utilized N-acetyl[14C]mannosamine with differing efficiencies. Radioactive products identified as sialic acid biosynthetic intermediates amounted to 49%, 0.04% and 5.6% of added precursor in liver, kidney and colon respectively. Catabolism of labelled precursor to non-hexosamine products was high in kidney and colonic mucosal-cell fractions.  相似文献   

2.
Analysis of the apparently homogeneous sulfated sialoglycoproteins isolated from the epithelial cells of the upper (proximal to the ileum) and lower (proximal to the rectum) halves of Wistar rat colon showed that whereas they were similar in overall carbohydrate and amino acid composition, they differed significantly in the O-acetyl substitution pattern of their constituent sialic acids. The glycoprotein from the upper half of the colon was found to contain a larger percentage of sialic acid substitued at C7 and/or C8, as well as at C4 and C7 and/or C8; it contained less sialic acid which was unsubstituted as well as less subsituted at C4 alone. It has been shown that differences in substitution at C7 and/or C8 can be detected by analysis of the 105 000 g supernatants prepared from homogenates of isolated epithelial cells or fresh or formol calcium fixed whole colonic tissue.  相似文献   

3.
Structural insights into sialic acid enzymology   总被引:1,自引:0,他引:1  
Sialic acids are a diverse family of negatively charged sugars that play essential biological roles. Their presence and relative abundance in different cells is ultimately regulated by the concerted action of a large set of enzymes. In this review, we focus on the most recent advances on the enzymes that govern sialic acid metabolism, with emphasis on structural work. Major progress has been made in dissecting the catalytic mechanism of sialidases, revealing a modified scenario of the typical glycosidase ping-pong mechanism. Similarly, X-ray structures of sialyltransferases uncover significant variations of formerly known glycosyltransferase foldings. Both sialidases and sialyltransferases seem to tell us that sialic acid-handling enzymes have evolved important modifications related to the distinctive features of sialic acid itself.  相似文献   

4.
Colonic tissue was examined from normal (control) rats and azoxymethane- (carcinogen-) treated animals. Tumour-bearing colons from azoxymethane-treated rats were divided into malignant and non-malignant areas. Mucosal cells were prepared from the three types of colonic tissue and then examined for DNA and protein content and for the activities of ten enzymes involved in sialic acid metabolism. Enzyme activities were related to either the protein or the DNA content of fractions. The DNA content of cell homogenates was significantly different between tumour and non-malignant tissue and between both these tissues and normal mucosa. The protein content of the 100000 X g membrane pellet and supernatant fraction did not vary significantly between normal and non-malignant material but both these tissues differed significantly from tumour tissue. Significant variation between normal control and tumour tissue was detected at all levels of sialic acid metabolism, including N-acetylhexosamine interconversion and phosphorylation, sialic acid formation and activation, CMP-NeuAc breakdown and transfer and sialic acid release from glycoconjugates. The results indicate that major changes at all levels of sialic acid metabolism are associated with malignancy in rat colonic mucosa. Some of these changes are apparent in non-malignant mucosa and may reflect a pre-malignant state.  相似文献   

5.
Enterochromaffin (EC) cells of the epithelial cells release 5-HT into the lumen, as well as basolateral border. However, the physiological role of released 5-HT into the lumen is poorly understood. Concentrations of 5-HT in the colonic mucosa, colonic lumen, and feces were measured by HPLC in rats. To investigate whether intraluminal 5-HT accelerates colonic transit, 5-HT and (51)Cr were administered into the lumen of the proximal colon, and colonic transit was measured. To investigate whether 5-HT is released into the lumen, we used an ex vivo model of isolated vascularly and luminally perfused rat proximal colon. To investigate whether luminal 5-HT is involved in regulating stress-induced colonic motility, the distal colonic motility was recorded under the stress loading, and a 5-HT(3) receptor antagonist (ondansetron, 10(-6) M, 0.5 ml) was administered intraluminally of the distal colon. Tissue content of 5-HT in the proximal colon (15.2 +/- 4.3 ng/mg wet tissue) was significantly higher than that in the distal colon (3.3 +/- 0.7 ng/mg wet tissue), while fecal content and luminal concentration of 5-HT was almost the same between the proximal and distal colon. Luminal administration of 5-HT (10(-6)-10(-5) M) significantly accelerated colonic transit. Elevation of intraluminal pressure by 10 cmH(2)O significantly increased the luminal concentration of 5-HT but not the vascular concentration of 5-HT. Stress-induced stimulation of the distal colonic motility was significantly attenuated by the luminal administration of ondansetron. These results suggest that luminally released 5-HT from EC cells plays an important role in regulating colonic motility in rats.  相似文献   

6.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

7.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

8.
The colonic cells of the large intestine are one of the most proliferative tissues of the animal body. The pentose pathway has an essential role in cell division and growth being the only pathway forming ribose 5-P necessary for all nucleotide and nucleic acid sunthesis. The pentose pathway may also provide reducing potential as NADPH for biosynthesis and C-3- C-8 glycolyl compounds. The maximum catalytic capacities of the reactions of the non-oxidative pentose pathway for the conversion of ribose 5-P to hexose and triose phosphates by the proximal and distal colon under feeding and starvation regimes are among the highest in the animal body. The qualitative presence of the oxidative pentose pathway was assessed by measurement of the C-1/C-6 ratio value of 1.67-1.82. Enzymes of the F-type and L-type pentose pathways are present in colonocytes and their maximum catalytic activities in colonocyte cytosol are reported. The contribution of the F-type pentose cycle to the total glucose metabolism of colonocytes, measured by the specific yield method, is negligibly low (approximately 1.5%). Colonic epithelial cells use glucose at a high rate (7.1 +/- 0.33 mumol min-1g-1 dry wt) and 79% of the glucose is converted to lactate. Arabinose 5-P has an intermediary role in the formation of keto pentose, sedoheptulose and hexose phosphates from ribose 5-P by colonocyte cytosol. The intermediary and reaction products of [1-13C] ribose 5-P dissimilation by colonocytes is investigated by 13C NMR spectroscopy. The 13C positional isotope distributions show labelling of C-1 and C-3 of hexose 6-phosphates consistent with either the theoretical predictions of the F-type pentose pathway or of the activities of exchange reactions catalysed by transketolase and/or transaldolase. Measurements of exchange reactions showed that the C-1/C-3 labelling of these compounds is mostly, if not wholly, attributable to exchange catalysis by these group transferring enzymes. The results suggest that the F-type PC has little role in the glucose metabolism of colonocytes and pentose phosphate formation may thus occur by a contribution (approx 20% of the total glucose metabolism) by the alternate L-type pathway.  相似文献   

9.
Cyclic nucleotide metabolism was examined in rat distal colonic epithelial cells with different proliferative activities. Lower crypt cells had DNA synthetic rates 7-10-fold higher than surface cells. Without a phosphodiesterase inhibitor proliferative cells had reduced basal cyclic AMP-, cyclic GMP-, and cyclic AMP-dependent protein kinase activity ratios, as well as blunted cyclic AMP responses to prostaglandin E2 and vasoactive intestinal peptide compared to superficial cells. In the presence of 3-isobutyl-1-methylxanthine, basal cyclic AMP and responses to prostaglandin E2 and vasoactive intestinal peptide of proliferative cells exceeded values in superficial cells. This correlated with higher membrane adenylate cyclase activity in the proliferative cells. By contrast, particulate and soluble guanylate cyclase activities of superficial cells were higher than in proliferative cells. The apparent high Km soluble and particulate cyclic AMP and cyclic GMP phosphodiesterase activities of proliferative cells were 4-7-fold higher than those in superficial cells. Moreover, the apparent low Km soluble activity was absent in superficial cells. Thus, an altered rate of nucleotide degradation may mediate reduced cyclic AMP and cyclic GMP in proliferative versus superficial cells. Dibutyryl cyclic AMP, prostaglandin E2 or vasoactive intestinal peptide inhibited [3H]thymidine incorporation into DNA of colonic segments. Thus, reduced cyclic AMP in lower crypt cells may be a determinant of their greater proliferative activity.  相似文献   

10.
Short chain fatty acids (SCFA) stimulate colonic Na+ absorption and inhibit cAMP and cGMP-mediated Cl- secretion. It is uncertain whether SCFA have equivalent effects on absorption and whether SCFA inhibition of Cl- secretion involves effects on mucosal enzymes. Unidirectional Na+ fluxes were measured across stripped colonic segments in the Ussing chamber. Enzyme activity was measured in cell fractions of scraped colonic mucosa. Mucosal 50 mM acetate, propionate, butyrate and poorly metabolized isobutyrate stimulated proximal colon Na+ absorption equally (300%). Neither 2-bromo-octanoate, an inhibitor of beta-oxidation, nor carbonic anhydrase inhibition affected this stimulation. All SCFA except acetate stimulated distal colon Na+ absorption 200%. Only one SCFA affected proximal colon cGMP phosphodiesterase (PDE) (18% inhibition by 50 mM butyrate). All SCFA at 50 mM stimulated distal colon cAMP PDE (24-43%) and decreased forskolin-stimulated mucosal cAMP content. None of the SCFA affected forskolin-stimulated adenylyl cyclase in distal colon or ST(a)-stimulated guanylyl cyclase in proximal colon. Na+-K+-ATPase in distal colon was inhibited 23-51% by the SCFA at 50 mM. We conclude that all SCFA (except acetate in distal colon) stimulate colonic Na+ absorption equally, and the mechanism does not involve mucosal SCFA metabolism or carbonic anhydrase. SCFA inhibition of cAMP-mediated secretion may involve SCFA stimulation of PDE and inhibition of Na+-K+-ATPase.  相似文献   

11.
1. The occurrence of five enzymes of the pentose phosphate pathway in cell-free preparations of the mucosa of rat small intestine is described. These enzymes were found to be localized mainly in the supernatant fraction (6240000g-min.). 2. The properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were studied with respect to K(m) values for substrates and NADP(+), pH optima and the effects of p-chloromercuribenzoate and palmitoyl-CoA. Higher total and specific activities of these two dehydrogenases were noted in the proximal half of the small intestine of the rat than in the distal half. 3. The specific activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the mucosa of the small intestine of the rat, cat, rabbit and guinea pig were compared. 4. In the rat the specific activities of ribose 5-phosphate isomerase, transketolase and transaldolase were higher in the supernatant fractions from the intestinal mucosa than in those from the liver. 5. The role of the pentose phosphate pathway is discussed in relation to the metabolism of hexose phosphates in the intestinal mucosa.  相似文献   

12.
Histochemical studies of epithelial cell glycoproteins in normal rat colon   总被引:2,自引:0,他引:2  
Two general classes of glycoproteins have been identified in the colonic epithelial cells of the Sprague Dawley rat. Glycoproteins belonging to the first of these classes contain sialic acids both with and without side chain o-acyl substituents, abundant o-sulphate ester and 'neutral sugars' (hexose, 6-deoxyhexose or N-acetyl hexosamine residues) with oxidisable vicinal diols and are located in the goblet cells of the descending colon and in goblet cells populating the upper halves of the crypts of the ascending colon. In the descending colon, the sulphosialoglycoproteins in the goblet cells in the base of the crypts contain sialic acids without side chain o-acyl substituents. It appears that as these cells migrate up the crypts, there is o-acylation of the side chains of the sialic acids of the glycoproteins and an increase in the quantity of 'neutral sugars' without a corresponding increase in sialic acid. Glycoproteins with similar properties to those of the goblet cells of the upper halves of the crypts of the descending colon, but containing less sulphate, are found in the goblet cells of the upper half of the crypts of the ascending colon. The second general class of glycoproteins contain sialic acids all, or almost all of which, are substituted at position C8 and only relatively small quantities of sulphate. They are located in the mucous cells of the descending colon, the deep crypt secretory cells of the ascending colon and the columnar absorptive cell brush border.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Colonic neoplasia is more frequent in the distal colon than in the proximal colon in spontaneous human disease and in carcinogen-induced tumors in rodents. The possibility that this may reflect regional differences in morphology and in proliferative responses to fasting and refeeding was explored in this study in rats. Scanning electron microscopy revealed that the density of colonic crypts was 36% higher in the distal than in the proximal colon, while light microscopy revealed that distal crypts had 70% more colonocytes than proximal crypts. Thus, the number of colonocytes per unit area in the distal colon is approximately twice that in the proximal colon. Proliferation was assessed by the uptake of bromodeoxyuridine in vivo and showed that regions of the distal colon had greater suppression of proliferation during fasting than the cecum, and greater enhancement of proliferation during refeeding than that observed in the cecum or the proximal colon. Changes in proliferation associated with fasting and refeeding were accompanied by changes in the concentrations of short chain fatty acids, but the data did not support the hypothesis of a direct relationship between increasing concentrations of short chain fatty acids and enhanced proliferation. Regional differences in morphology and proliferation could be relevant to the greater susceptibility of the distal colon to neoplasia.  相似文献   

14.
SIALOGLYCOPROTEINS AND SEVERAL GLYCOSIDASES IN DEVELOPING RAT BRAIN   总被引:6,自引:5,他引:1  
Abstract— The amount of sialoglycoproteins expressed as μmol of sialic acid per g of lipid-free residue remained fairly constant in developing rat brain. However, the activity of various enzymes which may be involved in glycoprotein metabolism varied in an inconstant fashion during the period of development. The specific activity of a neuraminidase increased, N -acetyl-β-glucosaminidase remained relatively constant, while the specific activities of α-mannosidase and α-fucosidase decreased.  相似文献   

15.
The lipid composition and fluidity of brush-border membranes prepared from rat proximal and distal colonocytes were determined. Fluidity, as assessed by steady-state fluorescence polarization techniques using the fluorophores 1,6-diphenyl-1,3,5-hexatriene, DL-2(9-anthroyl)stearic acid and DL-12(9-anthroyl)stearic acid, was decreased in distal compared to proximal plasma membranes. This pattern was similar to that previously described for both antipodal plasma membranes in rat enterocytes of the small intestine. The decrease in fluidity of the distal as compared to the proximal membranes resulted from an increase in cholesterol content, cholesterol/phospholipid molar ratio and degree of saturation of the fatty acid residues in the distal membranes. The specific activities of total alkaline phosphatase and cysteine-sensitive alkaline phosphatase, enzymes previously shown to be functionally dependent on the physical state of the colonic brush-border membrane's lipid, were also significantly lower in distal as compared to proximal clonic plasma membranes. These studies, therefore, demonstrate that differences in the lipid fluidity, lipid composition and certain enzymatic activities exist in brush-border membranes prepared from rat proximal and distal colonocytes. The regional variation in rat colonic luminal membrane lipid fluidity and composition may, at least partially, be responsible for differences in these enzymatic activities as well as in sodium and water absorption along the length of this organ.  相似文献   

16.
Oxytocin (OT) has been reported to have a potential protective effect on stress-induced functional gastrointestinal disorders. This study determined whether colonic contraction in adults was affected by antenatal maternal hypoxia, and whether OT is involved in antenatal maternal hypoxia induced colonic contraction disorder. Isometric spontaneous contractions were recorded in colonic longitudinal muscle strips in order to investigate colonic contractions and the effects of exogenous OT on the contraction in antenatal maternal hypoxia and control mice. Both high potassium and carbachol-induced contractions of proximal colon but not distal colon were reduced in antenatal maternal hypoxia mice. Exogenous OT decreased the contractions of proximal colonic smooth muscle strips in control mice, while it increased contractions in antenatal maternal hypoxia mice. OT increased the contractions of distal colonic smooth muscle strips in both antenatal maternal hypoxia and control mice. Hexamethonium blocked the OT-induced potentiation of proximal colon but not distal colon in antenatal maternal hypoxia mice. These results suggest that exogenous oxytocin reverses the decrease of proximal colonic smooth muscle contraction in antenatal maternal hypoxia mice via ganglia.  相似文献   

17.
Proliferative and mature intestinal cells of the jejunum and colon of rat, colon of man, and the surface cells of neoplastic colon lesions of man were assayed for thymidylate synthetase and thymidine kinase activities. Cells from the proliferative region of rat jejunal mucosa were found to have higher enzyme activities than cells from the non-proliferative region. Thymidylate synthetase activity was observed to decrease as cells migrated from base to upper crypt, whereas thymidine kinase activity increased during crypt migration and then declined as cells migrated onto villi. Thymidine kinase activity also remained elevated longer than thymidylate synthetase during cell migration in colonic mucosa of rat and man. High thymidine kinase: thymidylate synthetase ratios similar to those observed in flat mucosa before cells become fully mature were found in cells removed from expanding neoplastic lesions of man.  相似文献   

18.
Prostaglandin (PG) synthesis and degradation were examined in different regions (epithelial versus non-epithelial structures) of the rat distal colon by both HPLC analysis of [14C] arachidonate (AA) metabolites and by specific radioimmunoassays. Intact isolated colonic epithelial cells synthesized mainly PGF2 alpha and TXA2, as monitored from the formation of its stable degradation product TXB2 (PGF2 alpha greater than TXB2 greater than 6-keto-PGF1 alpha, the stable degradation product of PGI2 = PGD2 = PGE2 = 13,14-dihydro-15-keto-PGF2 alpha). The profile of PG products of isolated surface epithelial cells was identical to that of proliferative epithelial cells. However, generation of PGs by surface epithelium was 2 to 3-fold higher than by proliferative cells both basally and in the presence of a maximal stimulating concentration (0.1 mM) of AA. The latter implied a greater synthetic capacity of surface epithelium, rather than differences due to endogenous AA availability. The major sites of PG synthesis in colon clearly resided in submucosal structures; the residual colon devoid of epithelial cells accounted for at least 99% of the total PGs produced by intact distal colon. The profile of AA metabolites formed by submucosal structures also differed markedly from that of the epithelium. The dominant submucosal product was PGE2. PGE2 and its degradation product 13,14-dihydro-15-keto-PGE2 accounted for 63% of the PG products formed by submucosal structures (PGE2 much greater than PGD2 greater than 13,14-dihydro-15-keto-PGE2 greater than PGF2 alpha = TXB2 = 6-keto-PGF1 alpha greater than 13,14-dihydro-15-keto-PGF2 alpha). By contrast, epithelial cells, and particularly surface epithelium, contributed disproportionately to the PG degradative capacity of colon, as assessed from the metabolism of either PGE2 or PGF2 alpha. When expressed as a percentage, epithelial cells accounted for 71% of total colonic PGE2 degradative capacity but only 23% of total colonic protein. Approximately 15% of [3H] PGE2 added to the serosal side of everted colonic loops crossed to the mucosal side intact. Thus, at least a portion of the PGE2 formed in the submucosa reaches, and thereby can potentially influence functions of the epithelium.  相似文献   

19.
The growing interest in glycoconjugates expressed and released by the epithelium of the intestinal mucosa is tightly related to the multiple functional roles attributed to sialic acid and its derivatives. In the present work, biotin and HRP conjugated lectins were used to detect the sialylation pattern and to identify specific structural features of sialoderivatives in the rat colon. In particular, the occurrence and distribution of sialic acids linked alpha2,6 to D-Gal/D-GalNAc and alpha2,3 to D-Gal were directly demonstrated with SNA and MAL II binding, respectively. In addition, in order to by-pass the specificity problems of SNA and MAL II as histochemical reagents, as well as to look for additional and complementary information about acetylation degree and sites, we combined sialidase digestion, potassium hydroxide deacetylation, and differential periodate oxidation with PNA and DBA binding. The data showed the distribution and structure of sialic acid-beta-D-Gal(1-3)-D-GalNAc and sialic acid-D-GalNac sequences, which proved to be widely distributed as cellular components or secretory products in surface goblet cells and crypt cells of the colonic epithelium. A high degree of O-acetylation, with acetyl groups mainly at 9 and 4 positions, was found, showing an increasing gradient from the proximal to distal portion of the colon. These results, which largely reproduce the sialylation pattern in other species, contribute new insights in defining the tissue specific expression of sialoderivatives in the colonic mucosa, and testify to their high heterogeneity which the wide range of sialic acid functional correlates in the intestinal tract depend on.  相似文献   

20.
Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号