首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of the PKC inhibitor on Ca2+ responses to prolactin in the pig granulosa cells was studied using fluorescent dye and chlortetracycline. The effect was shown to be connected with activation of the PKC. The Ro 31-8220 increased penetration of extracellular calcium and exit of calcium from intracellular stores. The data obtained suggest an involvement of the PKC in changes of calcium contents in the pig granulosa cells activated by prolactin.  相似文献   

2.
The responsiveness of normal human keratinocytes to different modulators of protein kinase C (PKC) was investigated. The PKC agonist TPA, staurosporine (a non-specific inhibitor), and Ro31–8220 (a specific inhibitor) were studied for effect on cell morphology, growth rate, involucrin expression, and intracellular calcium levels. Surprisingly the response to nanomolar concentrations of staurosporine was similar to TPA and induced a fusiform morphology, inhibited growth, increased involucrin levels, and raised intracellular calcium. Staurosporine also increased the number of cornified envelopes, and its action therefore appeared identical to TPA. In contrast, Ro31–8220 had little effect on morphology or growth and blocked both the TPA-induced growth inhibition and calcium rise. Ro31–8220 had no effect on staurosporine-induced growth inhibition but partially reduced its associated calcium rise. These results suggest PKC activation is required for keratinocyte differentiation and that staurosporine acts like a PKC agonist to give a similar effect as TPA. Specific inhibition of PKC by Ro31–8220 inhibits TPA-induced differentiation. © 1994 wiley-Liss, Inc.  相似文献   

3.
Involvement of protein kinase C in the regulation of Ca2+ exit from intracellular stores of pig oocytes activated by prolactin was investigated, using the fluorescent dye chlortetracycline. In the presence of extracellular calcium, the inhibitor of protein kinase C Ro 31-8220 increased calcium exit from intracellular stores in pig oocytes after prolactin treatment. In calcium-free medium, Ro 31-8220 exerted effect on calcium release from intracellular stores. In calcium-free medium, prolactin did not stimulate calcium release from intracellular stores of oocytes in the presence of thimerosal, while in the presence of protein kinase C inhibitor, prolactin increased Ca2+ content from intracellular stores in such oocytes. These data suggest a direct involvement of protein kinase C in the processes of regulation of Ca2+ exit from intracellular stores of pig oocytes stimulated by prolactin.  相似文献   

4.
5.
Using two newly synthesized inhibitors, Ro 31-8220 and CGP 41 251, of protein kinase C (PKC), we analyzed: (1) how distinct PMN functions (shape changes, locomotion, pinocytosis) are regulated, and (2) the role of protein phosphorylation and PKC in this process. We were able to transform: (1) resting PMNs into locomoting cells using fNLPNTL, (2) locomoting cells into non-locomoting highly pinocytic cells using PMA, and (3) PMA-stimulated cells showing marked pinocytosis into locomoting or into resting cells using Ro 31-8220. It is thus possible to selectively manipulate PMN function (resting state, locomotion, marked pinocytosis), indicating that there are different regulatory pathways. It was not possible to induce locomotion and marked pinocytosis simultaneously, indicating crosstalk between pathways. Ro 31-8220 inhibited PMA-induced shape changes (nonpolar cells) and pinocytosis, but not fNLPNTL-induced shape changes (polarity) and pinocytosis. At higher concentrations, Ro 31-8220 alone elicited cell polarity and chemokinesis, indicating that a constitutively active protein kinase is involved in maintaining the spherical shape of resting PMNs. Functional effects of another PKC inhibitor, CGP 41 251, on neutrophil function were strikingly different. CGP 41 251 selectively inhibited fNLPNTL-induced polarity and locomotion (but not colchicine or Ro 31-8220-induced polarity), and it failed to inhibit PMA-induced, stimulated pinocytosis and shape changes. Although the effects of Ro 31-8220 vs. CGP 41 251 on PMN function were strikingly different, the inhibition of profiles for constitutive and for fNLPNTL- or PMA-induced protein phosphorylation in intact PMNs showed only small differences, which could not yet be conclusively related to cell function. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC.  相似文献   

7.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

8.
9.
蛋白激酶C对大鼠支气管平滑肌KV通道的影响   总被引:11,自引:5,他引:11  
Liu XS  Xu YJ  Zhang ZX  Ni W  Chen SX 《生理学报》2003,55(2):135-141
用全细胞膜片钳、Western印迹法和逆转录—PCR技术,观察蛋白激酶C(protein kinase C,PKC)对大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)电压依赖性延迟整流钾通道(Kv)活性及其亚型Kvl.5表达的影响。结果为:(1)PKC激活剂豆蔻酰佛波醇乙酯(phorbol 12-myristate 13-acetate,PMA)显著抑制急性分离大鼠BSMCs的Kv通道电流,该效应被PKC阻断剂Ro31—8220显著抑制;(2)PMA显著抑制体外培养大鼠BSMCs的Kvl.5 mRNA和蛋白质的表达,该效应被Ro31—8220显著抑制。上述观察结果提示,PKC活化可抑制大鼠BSMCs的Kv通道电流活性,下调Kvl.5亚型的表达水平。  相似文献   

10.
This study investigates the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) release caused by Staphylococcus aureus lipoteichoic acid (LTA) in RAW 264.7 macrophages. A phosphatidylcholine-phospholipase C (PC-PLC) inhibitor (D-609) and a phosphatidylinositol-phospholipase C (PI-PLC) inhibitor (U-73122) attenuated LTA-induced iNOS expression and NO release. Two PKC inhibitors (Go 6976 and Ro 31-8220), an NF-kappaB inhibitor (pyrrolidine dithiocarbamate; PDTC), and long-term (24 h) 12-phorbol-13-myristate acetate (PMA) treatment each also inhibited LTA-induced iNOS expression and NO release. Treatment of cells with LTA caused an increase in PKC activity; this stimulatory effect was inhibited by D-609, U-73122, or Ro 31-8220. Stimulation of cells with LTA caused IkappaB-alpha phosphorylation and IkappaB-alpha degradation in the cytosol, and translocation of p65 and p50 NF-kappaB from the cytosol to the nucleus. Treatment of cells with LTA caused NF-kappaB activation by detecting the formation of NF-kappaB-specific DNA-protein complexes in the nucleus; this effect was inhibited by Go 6976, Ro 31-8220, long-term PMA treatment, PDTC, L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), and calpain inhibitor I. These results suggest that LTA might activate PC-PLC and PI-PLC to induce PKC activation, which in turn initiates NF-kappaB activation, and finally induces iNOS expression and NO release in RAW 264.7 macrophages.  相似文献   

11.
Possible links have been investigated between activation of protein kinase C (PKC) and endothelin (ET) production by small blood vessels. Perfusion pressures were recorded from rat isolated mesenteric artery, with or without the small intestine attached, before and after addition to the perfusate of either ET-1, ET-3 or the PKC activator 12-deoxyphorbol 13-phenylacetate (DOPPA). Rises in perfusion pressure in response to ET-1 (10(-8) M)or DOPPA (10(-6) M) were reduced significantly by pre-treatment with either the ET(A) receptor antagonist PD151242 (10(-6) M) or the PKC inhibitor Ro 31-8220 (10(-6) M). ET-3 (10(-8) M) had a significant, albeit small, effect only when the gut was still attached to the mesentery. Inthis latter preparation ET-1 and DOPPA increased the permeability of villi microvessels to colloidal carbon in the perfusate. This effect of DOPPA was reduced by pre-treatment with either PD151242 or Ro 31-8220, but the effects of ET-1 were reduced significantly only by Ro 31-8220. ET-3 (10(-8) M) was without effect. The results suggest a possible bi-directional link between ET(A) receptors and PKC in the intestinal vasculature.  相似文献   

12.
We report here a new example in which glucocorticoids (GCs) acted in a rapid, nongenomic way. In rat B103 neuroblastoma cells, 5-hydroxytryptamine (5-HT) was found to evoke an immediate rise in intracellular free calcium concentration ([Ca(2+)](i)). Pre-incubation of B103 cells for 5 min with corticosterone (B) or bovine serum albumin-conjugated corticosterone (B-BSA) concentration-dependently (10(-4)-10(-8) M) inhibited the peak increments in [Ca(2+)](i). Cortisol and dexamethasone had a similar effect, while deoxycorticosterone and cholesterol were ineffective. This rapid inhibitory effect of corticosterone could be mimicked by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and abolished completely by PKC inhibitors Ro31-8220 or GF-109203X. Neither pertussis toxin (PTX) nor nuclear GC receptor (GR) antagonist RU38486 influenced the rapid action of B. Our results suggest that GCs can modulate the 5-HT-induced Ca(2+) response in B103 cells in a membrane-initiated, nongenomic, and PKC-dependent manner.  相似文献   

13.
14.
15.
The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK) and protein kinase C (PKC), respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP) induced generation of superoxide anion and thromboxane B(2) (TXB(2)) in guinea-pig alveolar macrophages (AM). Genistein (3-100 muM) dose dependently inhibited FMLP (3 nM) induced superoxide generation in non-primed AM and TXB(2) release in non-primed or in lipopolysaccharide (LPS) (10 ng/ml) primed AM to a level > 80% but had litle effect up to 100 muM on phorbol myristate acetate (PMA) (10 nM) induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC(50) 0.21 +/- 0.10 muM) but had no effect on or potentiated (at 3 and 10 muM) FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 muM) inhibited primed TXB(2) release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.  相似文献   

16.
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in D-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca(2+), and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca(2+). Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCε but not PKC. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca(2+). This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca(2+) concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.  相似文献   

17.
Calcium induces both involucrin and transglutaminase-K in normal keratinocytes (NHK) but not in squamous carcinoma cell lines (SCC). The protein kinase C (PKC) agonist phorbol myristoyl acetate potentiates and the PKC antagonist Ro31-8220 blocks the ability of calcium to stimulate the involucrin promoter in normal human keratinocytes but not in SCC4. We thus examined the ability of calcium to regulate the levels of five PKC isozymes in NHK and two SCC. In the normal keratinocytes, the levels of PKC [alpha], PKC [delta], PKC [eta], and PKC [zeta] increased over the first one to two weeks in a calcium-and time-dependent manner. PKC [epsilon] decreased in a time-and calcium-dependent fashion over the three-week period. All five isozymes showed little change during culture in SCC4 at any calcium concentration. Calcium and time of culture had partial effects on SCC12B2, a carcinoma that shows partial differentiation characteristics. Since PKC [alpha] is the only calcium responsive PKC isozyme in keratinocytes and most likely to be directly involved in calcium induced differentiation, we evaluated the effect of inhibiting its production with antisense oligonucleotides on calcium-regulated markers of differentiation. We found that the PKC [alpha] specific antisense oligonucleotide blocked calcium stimulated involucrin promoter activity as well as PKC [alpha], involucrin, and transglutaminase protein production, whereas the sense oligonucleotide control did not. We conclude that although a number of PKC isozymes are regulated during calcium-induced differentiation, PKC [alpha] plays a necessary role in mediating calcium-induced differentiation. Failure to regulate PKC [alpha] in SCC4 may underlie at least part of the failure of calcium to promote differentiation in these cells.  相似文献   

18.
A series of bisindolylmaleimide (Bis) compounds were designed as analogs of the natural compound staurosporine (STS), which is a potent inducer of apoptosis. Many of the Bis analogs appear to be highly selective inhibitors of the protein kinase C (PKC) family, including PKC-alpha, -beta, -gamma, -delta, -epsilon, and -zeta, unlike STS, which is an inhibitor of a broad spectrum of protein kinases. In this report we describe the effects of the Bis analogs, Bis-I, Bis-II, Bis-III and Ro-31-8220 on the survival and proliferation of HL-60 cells, which have been widely used as a model cell system for studying the biological roles of PKC. Treatment of HL-60 cells with Bis-I, Bis-II, Bis-III, or Ro-31-8220 blocked phosphorylation of the PKC target protein Raf-1 with equal potency but did not appear to affect the general phosphorylation of proteins by other kinases. However, the biological effects of the Bis compounds were different: Bis-I and Bis-II had no observable effects on either cell survival or proliferation; Bis-III inhibited cell proliferation but not survival, whereas Ro-31-8220 induced apoptosis. These results indicated that the members of the PKC family which could be inhibited by the Bis analogs were required neither for survival nor proliferation of HL-60 cells. Analyses of cells treated with Ro-31-8220 showed that the apoptotic effect of Ro-31-8220 on HL-60 cells was mediated by a well-characterized transduction process of apoptotic signals: i.e., mitochondrial cytochrome c efflux and the activation of caspase-3 in the cytosol. Moreover, the ability of Ro-31-8220 to induce apoptotic activation was completely inhibited by the over-expression of the apoptotic suppressor gene, Bcl-2, in the cells. Interestingly, proliferation of the Bcl-2-over-expressing cells was still sensitive to the presence of Ro-31-8220, suggesting that the inhibitory effects of Ro-31-8220 on viability and cell proliferation were mediated by different mechanisms. In particular, the apoptotic effect of Ro-31-8220 on cells was not altered by the presence of an excess amount of the other Bis analogs, suggesting that this effect is mediated by a factor(s) other than PKC or by a mechanism which was not saturable by the other Bis analogs. Finally, structure-function analyses of compounds related to Ro-31-8220 revealed that a thioamidine prosthetic group in Ro-311-8220 was largely responsible for its apoptotic activity.  相似文献   

19.
While a great deal of attention has been focused on G-protein-coupled receptor (GPCR)-induced epidermal growth factor receptor (EGFR) transactivation, it has been known for many years that the tyrosine kinase activity of the EGFR is inhibited in cells treated with tumor-promoting phorbol esters, a process termed EGFR transmodulation. Because many GPCR agonists that elicit EGFR transactivation also stimulate the Gq/phospholipase C (PLC)/protein kinase C (PKC) pathway, we hypothesized that PKC-mediated inhibition of EGFR transactivation operates physiologically as a feedback loop that regulates the intensity and/or duration of GPCR-elicited EGFR transactivation. In support of this hypothesis, we found that treatment of intestinal epithelial IEC-18 cells with the PKC inhibitors GF 109203X or Ro 31-8220 or chronic exposure of these cells to phorbol-12,13-dibutyrate (PDB) to downregulate PKCs, markedly enhanced the increase in EGFR tyrosine phosphorylation induced by angiotensin II or vasopressin in these cells. Similarly, PKC inhibition enhanced EGFR transactivation in human colonic epithelial T84 cells stimulated with carbachol, as well as in bombesin-stimulated Rat-1 fibroblasts stably transfected with the bombesin receptor. Furthermore, cell treatment with inhibitors with greater specificity towards PKCα,  including Gö6976, Ro 31-7549 or Ro 32-0432, also increased GPCR-induced EGFR transactivation in IEC-18, T84 and Rat-1 cells. Transfection of siRNAs targeting PKCα  also enhanced bombesin-induced EGFR tyrosine phosphorylation in Rat-1 cells. Thus, multiple lines of evidence support the hypothesis that conventional PKC isoforms, especially PKCα, mediate feedback inhibition of GPCR-induced EGFR transactivation.  相似文献   

20.
The pineal hormone, melatonin (5-methoxy N-acetyltryptamine) induces a rapid aggregation of melanin-containing pigment granules in isolated melanophores of Xenopus laevis. Treatment of melanophores with activators of protein kinase C (PKC), including phorbol esters, mezerein and a synthetic diacylglycerol, did not affect pigment granule distribution but did prevent and reverse melatonin-induced pigment aggregation. This effect was blocked by an inhibitor of PKC, Ro 31-8220. The inhibitory effect was not a direct effect on melatonin receptors, per se, as the slow aggregation induced by a high concentration of an inhibitor of cyclic AMP-dependent protein kinase (PKA), adenosine 3',5'-cyclic monophosphothioate, Rp-diastereomer (Rp-cAMPS), was also reversed by PKC activation. Presumably activation of PKC, like PKA activation, stimulates the intracellular machinery involved in the centrifugal translocation of pigment granules along microtubules. alpha-Melanocyte stimulating hormone (alpha-MSH), like PKC activators, overcame melatonin-induced aggregation but this response was not blocked by the PKC inhibitor, Ro 31-8220. This data indicates that centrifugal translocation (dispersion) of pigment granules in Xenopus melanophores can be triggered by activation of either PKA, as occurs after alpha-MSH treatment, or PKC. The very slow aggregation in response to inhibition of PKA with high concentrations of Rp-cAMPS, suggests that the rapid aggregation in response to melatonin may involve multiple intracellular signals in addition to the documented Gi-mediated inhibition of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号