首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Antidepressants and antipsychotics are psychiatric agents used for the treatment of various types of psychiatric diseases. Although currently among the most commonly prescribed drugs, their effectiveness and adverse effects are the topic of many studies and controversial claims. Here we generate QSAR models based on compounds series including 20 drugs recommended for two critical psychiatric diseases: depression and schizophrenia and we use these QSAR models to predict the biological activity of these 20 antidepressants and antipsychotics. We establish the membrane ions' contributions (sodium, potassium, calcium and iron) mediated by water to the antagonism of these drugs at the 5-HT1A receptor. The reliability of our QSAR models in predicting compounds activity is indicated by significant values for cross-validated correlation q2 (0.60-0.76) and fitted correlation r2 (0.96-0.98) coefficients. Our results indicate that potassium, calcium and iron play a key role for the antagonistic activity of drugs at the 5-HT1A receptor. Moreover, based on the established QSAR equations, we analysed 24 new escitalopram derivatives as possibly improved antidepressants targeting the 5-HT1A receptor. We identified that the presence of methyl groups and hydrogen atoms improves antidepressant activity while the simultaneous presence of ethyl, propyl or halogens decreased drastically antidepressant activity at the 5-HT1A site.  相似文献   

2.
The serotonin (5-hydroxytryptamine) 2A receptor (5-HT2A) is an important G protein-coupled receptor (GPCR) that mediates the effects of hallucinogens and is the target of a number of commonly prescribed medications including atypical antipsychotics, antidepressants, and anxiolytics. The 5-HT2A receptor possesses a canonical Type I PDZ-binding domain (X-Ser/Thr-X-Phi) at the carboxyl terminus and has been predicted, but never demonstrated, to interact with PDZ domain-containing proteins. We discovered that PSD-95, a prototypic PDZ domain-containing protein, directly associates with the 5-HT2A receptor and regulates 5-HT2A receptor-mediated signaling and trafficking in HEK-293 cells. Co-immunoprecipitation studies revealed that the native 5-HT2A receptor, but not a mutant lacking the PDZ-binding domain, interacted directly with PSD-95. The association with PSD-95 enhanced 5-HT2A receptor-mediated signal transduction, a novel action of PSD-95 on GPCRs. The augmentation of 5-HT2A receptor signaling by PSD-95 was not accompanied by alteration in the kinetics of 5-HT2A receptor desensitization but was associated with the inhibition of agonist-induced 5-HT2A receptor internalization. Additional studies demonstrated that 5-HT2A receptor and PSD-95 were co-localized in clusters on the cell surface of HEK-293 cells. Taken together, the present work elucidates novel roles for PSD-95 in regulating the functional activity and intracellular trafficking of 5-HT2A receptors and possibly other GPCRs.  相似文献   

3.
5-HT2A and 5-HT2C receptors and their atypical regulation properties   总被引:6,自引:0,他引:6  
The 5-HT(2A) and 5-HT(2C) receptors belong to the G-protein-coupled receptor (GPCR) superfamily. GPCRs transduce extracellular signals to the interior of cells through their interaction with G-proteins. The 5-HT(2A) and 5-HT(2C) receptors mediate effects of a large variety of compounds affecting depression, schizophrenia, anxiety, hallucinations, dysthymia, sleep patterns, feeding behaviour and neuro-endocrine functions. Binding of such compounds to either 5-HT(2) receptor subtype induces processes that regulate receptor sensitivity. In contrast to most other receptors, chronic blockade of 5-HT(2A) and 5-HT(2C) receptors leads not to an up- but to a (paradoxical) down-regulation. This review deals with published data involving such non-classical regulation of 5-HT(2A) and 5-HT(2C) receptors obtained from in vivo and in vitro studies. The underlying regulatory processes of the agonist-induced regulation of 5-HT(2A) and 5-HT(2C) receptors, commonly thought to be desensitisation and resensitisation, are discussed. The atypical down-regulation of both 5-HT(2) receptor subtypes by antidepressants, antipsychotics and 5-HT(2) antagonists is reviewed. The possible mechanisms of this paradoxical down-regulation are discussed, and a new hypothesis on possible heterologous regulation of 5-HT(2A) receptors is proposed.  相似文献   

4.
5-hydroxytryptamine (5-HT) or serotonin 2A receptors play an important role in modulation of prefrontal cortex (PFC) activity and have been implicated in the physiopathology of psychiatric disorders. There is no quantitative information on the percentage of glutamatergic and GABAergic cells that express 5-HT(2A) receptors in human and monkey PFC. We have used double in situ hybridization to quantify the mRNA co-localization of 5-HT(2A) receptor with the glutamatergic transporter vesicular glutamate transporter 1, and with the GABAergic marker glutamic acid decarboxylase 65/67 and in parvalbumin and calbindin GABAergic cell populations. Our results show that nearly every glutamatergic cell (86-100%) in layers II-V expressed 5-HT(2A) receptor mRNA in both species. This percentage was lower in layer VI (13-31%). In contrast, not all the GABAergic interneurons (13-46%) expressed 5-HT(2A) receptor mRNA. This receptor was expressed in 45-69% of parvalbumin and in 61-87% of calbindin positive cells. These results indicate that, while the majority of glutamatergic neurons can be sensitive to 5-HT action via 5-HT(2A) receptors, this modulation occurs only in a limited population of GABAergic interneurons and provides new neuroanatomical information about the role played by serotonin through 5-HT(2A) receptors in the PFC and on the sites of action for drugs such as antipsychotics and antidepressants used in treatment of psychiatric disorders.  相似文献   

5.
It is generally accepted that antidepressants and antipsychotics mediate their therapeutic effects via specific interaction with processes related to synaptic neurotransmission in the central nervous system. Besides their well-known classical mechanisms of action, antidepressants and antipsychotics show widely unknown effects, which might also contribute to the pharmacological profile of these agents. There is growing evidence that an interaction of these drugs with allosteric modulatory sites of ligand-gated ion channels (LGICs) might represent a yet unknown principle of action. Such interactions of psychopharmacological drugs with LGICs might play an important role both for the therapeutic efficacy and the side effect profile of these agents. In this review, we focus on the direct interaction of antidepressants and antipsychotics with LGICs, which may provide a basis for the development of novel psychopharmacological drugs.  相似文献   

6.
Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.  相似文献   

7.
The hippocampus as a important limbic structure has polyfunction properties among which take place chronotropic activity. It is showed in instability of different biological rhythms that provided for adaptation of organism to changing environment conditions. Chronotropic activity may be depenede from reciprocal connections of the hippocampus with brain rhythmorganizing structures (suprachiasmatic nuclei of hypothalamus and pineal gland). Increase of hippocampal excitability after chronic stress are produce disorganization of some rhythmic processes and followed neurosis or psychical depression. Psychotropic drugs (anxiolytics and antidepressants) by means of intensified of hippocampal inhibitory mechanisms (previously GABA and 5-HT) are stabilized of biorhythms what determined their specific anxiolytic and antidepressant effects.  相似文献   

8.
Serotonin receptors are the product of 15 distinct genes, 14 of which are G protein-coupled receptors. These receptors are expressed in a wide range of cell types, including distinct neuronal populations, and promote diverse functional responses in multiple organ systems. These receptors are important for mediating the in vivo effects of their cognate neurotransmitter, serotonin, as well as the endogenous tryptamines. In addition, the actions of many drugs are mediated, either directly or indirectly, through serotonin receptors, including antidepressants, antipsychotics, anxiolytics, sleep aids, migraine therapies, gastrointestinal therapeutics and hallucinogenic drugs. It is becoming increasingly evident that serotonin receptors can engage in differential signaling that is determined by the chemical nature of the ligand and that ligands that demonstrate a predilection for inducing a particular signaling cascade are considered to have "functional selectivity". The elucidation of the cellular signaling pathways that mediate the physiological responses to serotonin and other agonists is an active area of investigation and will be an onward-looking focal point for determining how to effectively and selectively promote beneficial serotonergic mimicry while avoiding unwanted clinical side effects. This review highlights the modulation of serotonin 2A, 2C, and four receptors by β-arrestins, which may represent a fulcrum for biasing receptor responsiveness in vivo.  相似文献   

9.
D Perici?  H Manev 《Life sciences》1988,42(25):2593-2601
Effects of the classic antidepressant imipramine and of an imipramine-like potential antidepressant dihydroergosine were studied in mice, rats and guinea pigs using behavioural models associated with the activation of 5-HT2 and 5-HT1 receptors respectively. Both drugs given in a single dose inhibited the 5-HT2 mediated behaviour for 24 and 48 h respectively and simultaneously stimulated 5-HT1 mediated behaviour for 6 days. Blockade of 5-HT2 receptors could have reduced their inhibitory influence on 5-HT1 receptors. We propose that the interplay between the two receptor subtypes controls the serotoninergic transmission. This idea throws a new light on the mode of action of antidepressants.  相似文献   

10.
The discovery of N-substituted-pyridoindolines and their binding affinities at the 5-HT(2A), 5-HT(2C) and D(2) receptors, and in vivo efficacy as 5-HT(2A) antagonists is described. The structure-activity relationship of a series of core tetracyclic derivatives with varying butyrophenone sidechains is also discussed. This study has led to the identification of potent, orally bioavailable 5-HT(2A)/D(2) receptor dual antagonists as potential atypical antipsychotics.  相似文献   

11.
The synthesis of a series of novel 2-(aminoalkyl)-2,3,3a,8-tetrahydrodibenzo[c,f]isoxazolo[2,3-a]azepine derivatives as well as their 5-HT(2A/2C) and H(1) receptor binding affinities are described. The in vivo activity as potential anxiolytics of the synthesised compounds was measured in a mCPP challenge test. One of the compounds, 2a, proved to be a potent 5-HT(2A/2C) receptor antagonist showing as well oral activity and therefore could be considered as a potential anxiolytic/antidepressant agent.  相似文献   

12.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

13.
The serotonin (5-HT) syndrome is the most serious toxic interaction of antidepressants, but no pharmacotherapy has yet been established. In the present study, we created an animal model of the 5-HT syndrome by intraperitoneally injecting rats with clorgyline (2 mg/kg) and 5-hydroxy-L-tryptophan (5-HTP) (100 mg/kg) and evaluated the effectiveness of potent 5-HT(2A) receptor antagonists and GABA-enhancing drugs, including diazepam and chlormethiazole. The rectal temperature of the rats was measured, and the noradrenaline (NA) and 5-HT levels in the anterior hypothalamus were measured by microdialysis. In the group pre-treated with saline, the rectal temperature increased to more than 40 degrees C, and all of the animals died within 90 min after administration. Pre-treatment with potent 5-HT(2A) receptor antagonists prevented the development of hyperthermia and death in the rats. Pre-treatment with diazepam, 10 and 20mg/kg, and chlormethiazole, 50 and 100mg/kg, attenuated the development of hyperthermia. Although neither of these drugs completely prevented the rats from dying, they prolonged their survival time. Regardless of the type of therapeutic agents, the concentration of 5-HT increased to about 1100-fold the pre-administration level. The NA levels in the saline group increased to about 16-fold the pre-administration levels, but the increase was significantly lower in the rats that survived as a result of drug therapy. These results suggest that GABA-mimetic drugs may be effective against the 5-HT syndrome, although they have a somewhat weaker effect than the potent 5-HT(2A) receptor blockers, and that not only is 5-HT activity increased in the brain in the 5-HT syndrome, but the NA system is also enhanced.  相似文献   

14.
Serotonin receptors are the product of 15 distinct genes, 14 of which are G protein-coupled receptors. These receptors are expressed in a wide range of cell types, including distinct neuronal populations, and promote diverse functional responses in multiple organ systems. These receptors are important for mediating the in vivo effects of their cognate neurotransmitter, serotonin, as well as the endogenous tryptamines. In addition, the actions of many drugs are mediated, either directly or indirectly, through serotonin receptors, including antidepressants, antipsychotics, anxiolytics, sleep aids, migraine therapies, gastrointestinal therapeutics and hallucinogenic drugs. It is becoming increasingly evident that serotonin receptors can engage in differential signaling that is determined by the chemical nature of the ligand and that ligands that demonstrate a predilection for inducing a particular signaling cascade are considered to have “functional selectivity”. The elucidation of the cellular signaling pathways that mediate the physiological responses to serotonin and other agonists is an active area of investigation and will be an onward-looking focal point for determining how to effectively and selectively promote beneficial serotonergic mimicry while avoiding unwanted clinical side effects. This review highlights the modulation of serotonin 2A, 2C, and four receptors by β-arrestins, which may represent a fulcrum for biasing receptor responsiveness in vivo.  相似文献   

15.
甘丙肽(galanin, GAL)作为治疗抑郁症的可能靶点被关注已久,但目前仍未有广泛应用的GAL类抗抑郁药物。GAL可与3种G蛋白偶联受体(GalR1~3)结合,GalR1和GalR3介导促进抑郁的作用,GalR2介导抗抑郁的作用。GAL的N端有生物活性的片段GAL (1-15),通过其受体GalR1-GalR2异聚体(heteromer),介导比GAL更强的调节抑郁效应。GAL (1-15)还可以通过GalR1-GalR2异聚体与5-羟色胺1A受体(5-HT1AR)相互作用形成GalR1-GalR2-5-HT1AR异聚体的方式,加强5-HT1AR激动剂的抗抑郁效果。此外,GAL及其受体还与去甲肾上腺素、神经肽Y、脑源性神经营养因子、多巴胺等递质或因子交互作用调节抑郁。本文梳理GAL及其受体对抑郁的调节作用及其可能机制,并对以GAL及其受体为靶点开发的药物应用于临床治疗抑郁症的可能性进行探讨。  相似文献   

16.
Hensler JG 《Life sciences》2003,72(15):1665-1682
Adaptive changes in the serotonergic system are generally believed to underlie the therapeutic effectiveness of the azapirone anxiolytics and a variety of antidepressant drugs. The serotonin-1A (5-HT(1A)) receptor has been implicated in affective disorders. Thus, studies of the regulation of 5-HT(1A) receptor function may have important implications for our understanding the role of this receptor in the mechanism of action of these therapeutic agents. This review focuses on the regulation of central 5-HT(1A) receptor function following administration of 5-HT(1A) receptor agonists or antidepressant drugs expected to increase the synaptic concentration of the neurotransmitter 5-HT. The majority of evidence supports regional differences in the regulation of central 5-HT(1A) receptor function following repeated agonist or antidepressant administration, which may be due to differences in processes involved in desensitization of the receptor at the cellular level. Region-specific differences in the regulation of 5-HT(1A) receptor function may be based on compensatory changes distal to the receptor, such as regulatory changes at the level of effector (e.g. adenylyl cyclase or ion channel), or at the level of the G protein such as changes in G protein expression, or phosphorylation of the G protein. It may be that the increase in serotonin neurotransmission, due to somatodendritic autoreceptor desensitization following agonist or antidepressant treatment, to normo-sensitive 5-HT(1A) receptors in certain brain regions (e.g. hippocampus or cortex) and to sub-sensitive 5-HT(1A) receptors in other brain regions (e.g. amygdala or hypothalamus) underlies the therapeutic efficacy of these drugs.  相似文献   

17.
Using radioligand binding assays and post-mortem normal human brain tissue, we obtained equilibrium dissociation constants (K(d)s) for nine new antipsychotic drugs (iloperidone, melperone, olanzapine, ORG 5222, quetiapine, risperidone, sertindole, ziprasidone, and zotepine), one metabolite of a new drug (9-OH-risperidone), and three older antipsychotics (clozapine, haloperidol, and pimozide) at nine different receptors (alpha1-adrenergic, alpha2-adrenergic, dopamine D2, histamine H1, muscarinic, and serotonin 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2C receptors). Iloperidone was the most potent drug at the two adrenergic receptors. ORG 5222 was the most potent drug at dopamine D2 and 5-HT2c receptors, while ziprasidone was the most potent compound at three serotonergic receptors (5-HT1A, 5-HT1D, and 5-HT2A). At the remaining two receptors, olanzapine was the most potent drug at the histamine H1 receptor (Kd=0.087 nM); clozapine at the muscarinic receptor (Kd=9 nM). Certain therapeutic and adverse effects, as well as certain drug interactions can be predicted from a drug's potency for blocking a specific receptor. These data can provide guidelines for the clinician in the choice of antipsychotic drug.  相似文献   

18.
The effects of serotonin (5-hydroxytryptamine; 5-HT) on in vitro transformed primary sporocysts of Schistosoma mansoni were investigated. Serotonin treatment significantly increased parasite motility (percentage of motile sporocysts) and length at concentrations as low as 1 microM. These effects were mimicked by the 5-HT agonist tryptamine, albeit with 10- to 100-fold less potency. The effects of 10 microM 5-HT on sporocyst motility were observed within 15 min posttreatment and on parasite length by 6 h posttreatment, and both effects were stable for up to 48 h. Receptor antagonists with varying affinities for defined vertebrate neurotransmitter receptor subtypes were examined for their effects on parasite behavior in the absence and presence of 10 microM 5-HT. In the absence of 5-HT, only methiothepin significantly inhibited normal parasite growth after 48 h of incubation. In the presence of 10 microM 5-HT, the serotonin receptor antagonists mianserin, ketanserin (both at 100 microM), and methiothepin (at 10 microM) significantly inhibited 5-HT-induced lengthening of primary sporocysts, while 3-tropanyl-indole-3-carboxylate and chlorpromazine had no significant effect. The effects of these same drugs on parasite motility were also examined. In the absence of 5-HT, 10 microM chlorpromazine increased parasite motility, while the other antagonists had no effect. When sporocysts were treated with 10 microM 5-HT for 2 h in the continued presence of antagonist, 100 microM mianserin, ketanserin, 3-tropanyl-indole-3-carboxylate, and 10 microM methiothepin inhibited 5-HT induced increases in parasite motility, while 10 microM chlorpromazine had no effect. These results show that primary sporocysts of S. mansoni exhibit behavioral responses to serotonin much like adult stages of this parasite. Furthermore, these responses appear to be mediated via receptors with pharmacological similarities to those previously described in adult worms.  相似文献   

19.
Although N-alkylarylpiperazines as a class are finding use as anxiolytics and antidepressants, many of these arylpiperazines are highly metabolically labile at the n-alkyl-piperazine bond. We have found that cyclopropanating the n-butyl chain contained in the 5-HT1A receptor agonist ipsapirone (2) instills a resistance to this metabolism as well as providing information about the geometrical requirements of the 5-HT1A receptor.  相似文献   

20.
It remains unclear why atypical antipsychotics confer a risk for hyperglycemia compared to typical antipsychotics. Atypical antipsychotics antagonize dopamine receptors-2 (D(2)) and serotonin (5-HT) receptors-2, while typical antipsychotics antagonize only D(2) receptors. We aimed at elucidating the mechanistic differences between the role of typical and atypical antipsychotics on prolactin levels and glucose regulation. A Medline search was conducted during 2010 using the search terms type 2 diabetes (T2D), typical/atypical antipsychotics, schizophrenia, prolactin, and serotonin. We discuss the effect of typical and atypical antipsychotics on prolactin levels and glucose regulation. Given that prolactin is under negative control by dopamine and positive control by serotonin, typical antipsychotics induce elevations in prolactin, while atypical antipsychotics do not. Research studies show protective effects of prolactin on T2D. We hypothesize that the difference in induction of T2D between typical and atypical antipsychotics is due to the antipsychotic receptor binding mediated effect in changes in prolactin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号