首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Extracellular purines and pyrimidines have major effects on cardiac rhythm and contraction. ATP/UTP are released during various physiopathological conditions, such as ischemia, and despite degradation by ectonucleotidases, their interstitial concentrations can markedly increase, a fact that is clearly associated with arrhythmia. In the present whole cell patch-clamp analysis on ventricular cardiomyocytes isolated from various mammalian species, ATP and UTP elicited a sustained, nonselective cationic current, I(ATP). UDP was ineffective, whereas 2'(3')-O-(4-benzoylbenzoyl)-ATP was active, suggesting that P2Y(2) receptors are involved. I(ATP) resulted from the binding of ATP(4-) to P2Y(2) purinoceptors. I(ATP) was maintained after ATP removal in the presence of guanosine 5'-[gamma-thio]triphosphate and was inhibited by U-73122, a PLC inhibitor. Single-channel openings are rather infrequent under basal conditions. ATP markedly increased opening probability, an effect prevented by U-73122. Two main conductance levels of 14 and 23 pS were easily distinguished. Similarly, in fura-2-loaded cardiomyocytes, Mn(2+) quenching and Ba(2+) influx were significant only in the presence of ATP or UTP. Adult rat ventricular cardiomyocytes expressed transient receptor potential channel TRPC1, -3, -4, and -7 mRNA and the TRPC3 and TRPC7 proteins that coimmunoprecipitated. Finally, the anti-TRPC3 antibody added to the patch pipette solution inhibited I(ATP). In conclusion, activation of P2Y(2) receptors, via a G protein and stimulation of PLCbeta, induces the opening of heteromeric TRPC3/7 channels, leading to a sustained, nonspecific cationic current. Such a depolarizing current could induce cell automaticity and trigger the arrhythmic events during an early infarct when ATP/UTP release occurs. These results emphasize a new, potentially deleterious role of TRPC channel activation.  相似文献   

2.
A scanning phosphorescence quenching microscopy technique, designed to prevent accumulated O(2) consumption by the method, was applied to Po(2) measurements in mesenteric tissue. In an attempt to further increase the accuracy of the measurements, albumin-bound probe was topically applied to the tissue and an objective-mounted pressurized bag was used to reduce the oxygen transport bypass through the thin layer of fluid over the mesentery. Po(2) was measured at multiple sites perpendicular to the blood/wall interface in the vicinity of 84 mesenteric arterioles (7-39 microm in diameter) at distances of 5, 15, 30, 60, 120, and 180 microm in seven anesthetized Sprague-Dawley rats, thereby creating Po(2) profiles. Interstitial Po(2) above and immediately beside arterioles was found to agree with known intravascular values. No significant difference in Po(2) profiles was found between small and large arterioles, indicating a small longitudinal Po(2) gradient in the precapillary mesenteric microvasculature. In addition, the Po(2) profiles were used to calculate oxygen consumption in the mesenteric tissue (56-65 nl O(2) x cm(-3) x s(-1)). Correction of these values for contamination with ambient oxygen yielded an oxygen consumption rate of 60-68 nl O(2) x cm(-3) x s(-1), the maximal limit for consumption in the mesentery. The results were compared with measurements made by other workers in regard to the employed techniques.  相似文献   

3.
4.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   

5.
6.
7.
8.
This article investigates heterogeneous proliferation within a seeded three-dimensional scaffold structure with the purpose of improving protocols for engineered tissue growth. A simple mathematical model is developed to examine the very strong interaction between evolving oxygen profiles and cell distributions within cartilaginous constructs. A comparison between predictions based on the model and experimental evidence is given for both spatial and temporal evolution of the oxygen tension and cell number density, showing that behaviour for the first 14 days can be explained well by the mathematical model. The dependency of the cellular proliferation rate on the oxygen tension is examined and shown to be similar in size to previous work but linear in form. The results show that cell-scaffold constructs that rely solely on diffusion for their supply of nutrients will inevitably produce proliferation-dominated regions near the outer edge of the scaffold in situations when the cell number density and oxygen consumption rate exceed a critical level. Possible strategies for reducing such non-uniform proliferation, including the conventional methods of enhancing oxygen transport, are outlined based on the model predictions.  相似文献   

9.
10.
11.
In brown adipose tissue fragments from 10-day-old rats or adult hamsters and in cells isolated from 10-day-old rats, norepinephrine (NE) activated oxygen consumption by 300-400%. NE-induced respiration was stable for 60-120 min and was inhibited by reduction of the oxygen concentration in the medium much more than respiration induced by the addition of respiratory substrates.  相似文献   

12.
Microcirculation of the sheath of the rat sciatic nerve fiber was investigated by using an intravital microscope, and changes in the diameter of the epineurial arterioles in response to highly oxygenated Krebs-bicarbonate solution were evaluated. Superfusion of low-oxygen (0%) Krebs-bicarbonate solution (LKS) onto rat sciatic nerves did not affect changes in the diameter of the arterioles. Nifedipine, a Ca(2+)-channel blocker, caused a dose-dependent dilation of the epineurial arterioles in LKS. In contrast, superfusion of high-oxygen (21%) Krebs-bicarbonate solution (HKS) onto rat sciatic nerves significantly constricted the epineurial arterioles in a time-dependent manner. The HKS-induced constriction of the epineurial arterioles was significantly reduced by treatment with 120 U/ml superoxide dismutase (SOD) alone or 5,000 U/ml catalase alone. In the presence of 120 U/ml SOD plus 5,000 U/ml catalase, 10(-4) M tempol, 10(-6) M diphenyleneiodium, 2 x 10(-4) M apocynin, or 10(-6) M allopurinol, the HKS-induced constriction of the epineurial arterioles completely disappeared. These results suggest that superfusion of highly oxygenated solution onto rat sciatic nerves constricts the epineurial arterioles through reactive oxygen species (ROS), including superoxide and hydrogen peroxide, and that production of superoxide involves a NADPH oxidase- or xanthine oxidase-dependent pathway. In conclusion, ROS play significant roles in the regulation of microcirculation of rat sciatic nerves in vivo.  相似文献   

13.
Summary Cell viability, cytochrome P-450 content, cell respiration, and lipid peroxidation were all investigated as a function of oxygen tension in adult rat hepatocytes in short-term culture (less than 9 h). The various oxygen tensions used in this study were obtained by equilibrating culture medium with air, air + nitrogen, or air + oxygen. Cell viability, as assessed by trypan blue exclusion, was significantly greater at all time points tested when hepatocytes were cultured in Ham's F12 medium containing 132 μM O2, as compared to medium equilibrated with air (220 μM O2) or air + oxygen (298 μM O2). Cells cultured in 220 μM O2 (air) also exhibited a gradual loss of cytochrome P-450, so that by 9 h of incubation less than 60% of the active material remained. This loss of P-450 was minimized when cells were cultured in 163 μM O2 and abolished when cells were cultured in 132 μM O2. The 132 μM O2 exposure conditions also maintained cell respiration at the 1 h incubation values, whereas there was a continuous loss in cell respiration over time when the cells were cultured in either 220 μM O2 (air) or 298 μM O2 (air:O2). These cytotoxicity findings may be related to oxidative cell damage inasmuch as it was additionally demonstrated that lipid peroxidation (as measured by malondieldehyde equivalents) was consistantly lower in hepatocytes cultured in air:N2 as compared to air or air:O2. These results suggest that hepatocyte culture in low oxygen tension improves not only cell viability but also maintains other functional characteristics of the cell. This work was supported by a Biomedical Research Support Grant S-S07-RR 05448 awarded to the University of Minnesota School of Public Health by the Biomedical Research Grant Program, Division of Research and Resources, National Institutes of Health, Bethesda, MD.  相似文献   

14.
The polarographic method using platinum electrode has been applied to study the effect of ceruloplasmin (CP) on the oxygen tension (pO2), oxygen saturation rate and rate of oxygen utilization in the muscular tissue of high-leukemic AKR mice, C57BL/6 mice with transplanted Lewis lung carcinoma (3LL) and rats after gamma-irradiation in a dose of 7 Gr. It has been shown that CP in AKR mice improves oxygen saturation of the muscular tissue. This effect is also evident in the case of the marked pO2 decrease in the muscle and its oxygen saturation rate (animals with Lewis lung carcinoma and after gamma-irradiation).  相似文献   

15.
16.
SNI-2011 induces the long-lasting increase in the amount of aquaporin-5 (AQP5) in apical plasma membranes (APMs) of rat parotid acini in a concentration-dependent manner. This induction was inhibited by p-F-HHSiD, U73122, TMB-8, or dantrolene but not by bisindolmaleimide or H-7, indicating that SNI-2011 acting at M(3) muscarinic receptors induced translocation of AQP5 via [Ca(2+)](i) elevation but not via the activation of protein kinase C. In contrast, acetylcholine induced a transient translocation of AQP5 to APMs. SNI-2011 induces long-lasting oscillations of [Ca(2+)](i) in the presence of extracellular Ca(2+). Thus, SNI-2011 induces a long-lasting translocation of AQP5 to APMs coupled with persistent [Ca(2+)](i) oscillations.  相似文献   

17.
18.
In this study we compare oxygen tension (PO2) histograms measured with O2 microelectrodes and a new optical PO2 measurement device, the OxyLite, in normal tissues (mouse spleen and thymus) and in tumors (R3230Ac in rats) (n = 5-6). The transient response to glucose infusion or 100% O2 breathing (hyperoxia) was also measured in tumors. PO2 histograms of spleen and thymus with the two devices were not different. The OxyLite tumor PO2 histogram, however, was left-shifted compared with the microelectrode (median PO2 1.0 vs. 4.0 mmHg, P = 0.016). Both probes responded to acute hyperglycemia with a mean increase of 3-6 mmHg, but the microelectrode change was not significant. The OxyLite consistently recorded large PO2 increases (approximately 28 mmHg) with hyperoxia, whereas the microelectrode response was variable. The OxyLite averages PO2 over an area that contains interstitial and vascular components, whereas the microelectrode measures a more local PO2. This study demonstrates the importance of considering the features of the measurement device when studying tissues with heterogeneous PO2 distributions (e.g., tumors).  相似文献   

19.
Summary Free radical damage has the potential to significantly affect the behavior of cells in culture. In this study the effects of antioxidants (superoxide dismutase, catalase, and vitamin E) and lowered oxygen tension (1% oxygen) on primary culture of rat mammary epithelial cells were examined. Rat mammary epithelial cells were dissociated in collagenase with or without the addition of antioxidants and low oxygen tension, then cultured for 10 d in rat-tail collagen gel matrix and fed with Dulbecco’s modified Eagle’sF12 medium supplemented with various hormones and growth factors. Growth potential of the mammary cells was enhanced when antioxidants and low oxygen tension were used, alone or in combination, during the cell dissociation period. Using antioxidants and low oxygen tension during the culture period failed to improve growth potential regardless whether cells were dissociated in standard conditions or with antioxidants and low oxygen tension. The use of antioxidants and low oxygen tension during the cell dissociation period also reduced the degree of keratinization of the cells after 10 d of culture. Using antioxidants and low oxygen tension during the cell culture period did not further reduce keratinization if antioxidants and low oxygen tension were used during the dissociation period, but were effective in reducing keratinization if cells were dissociated in standard condition. In this system, antioxidants and low oxygen tension reduced lipid peroxidation during the cell dissociation period. An iron chelator, desferal, can also reduce lipid peroxidation and enhance growth when used during cell dissociation, suggesting the enhanced growth potential by the addition of antioxidants and low oxygen to be due to the reduction of lipid peroxidation. This study is supported by grants CA05388 and GM11903 to Y. K. H. from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC.  相似文献   

20.
The oxygen tension (pO2) in the brain and subcutaneous tissue of newborn rats was studied during anoxia and reoxygenation with hyperoxic gas mixtures. The level of pO2 in both tissues during anoxia fell from 10-30 mm Hg to 0 mm Hg. When newborn rats were reoxygenated with 50% or 100% O2, the oxygen tension in the brain and subcutaneous first increased and then decreased in spite of the hyperoxic inhalation. The decrease of pO2 in the subcutaneous during hyperoxia was more pronounced than that in the brain. Data obtained are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号