首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.  相似文献   

4.
Treatment with monocrotaline causes pulmonary hypertension in rats. This results in severe pressure overload-induced hypertrophy of the right ventricles, whilst the normally loaded left ventricles do not hypertrophy. Both ventricles are affected by enhanced neuroendocrine stimulation in this model. We analyzed in this model load-induced and catecholamine-induced changes of right and left ventricular proteome by two-dimensional gel electrophoresis, tryptic in-gel digest, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. All analyzed animals showed right ventricular hypertrophy without signs of heart failure. Changes of 27 proteins in the right and 21 proteins in the left ventricular myocardium were found. Given the hemodynamic features of this animal model, proteome changes restricted to the right ventricle are caused by pressure overload. We describe for the first time a potentially novel pathway (BRAP2/BRCA1) that is involved in myocardial hypertrophy. Furthermore, we demonstrate that increased afterload-induced hypertrophy leads to striking changes in the energy metabolism with down-regulation of pyruvate dehydrogenase (subunit beta E1), isocitrate dehydrogenase, succinyl coenzyme A ligase, NADH dehydrogenase, ubiquinol-cytochrome C reductase, and propionyl coenzyme A carboxylase. These changes go in parallel with alterations of the thin filament proteome (troponin T, tropomyosin), probably associated with Ca(2+) sensitization of the myofilaments. In contrast, neurohumoral stimulation of the left ventricle increases the abundance of proteins relevant for energy metabolism. This study represents the first in-depth analysis of global proteome alterations in a controlled animal model of pressure overload-induced myocardial hypertrophy.  相似文献   

5.
6.
Activation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia through increased conversion of glucose to pyruvate and subsequently to lactate. We found that HIF-1 also actively suppresses metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1alpha null cells increases ATP levels, attenuates hypoxic ROS generation, and rescues these cells from hypoxia-induced apoptosis. These studies reveal a hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.  相似文献   

7.
Myocardial hypertrophy in Sprague-Dawley adult rats exposed to hypobaric hypoxia (0.40 atmosphere of air/18 h daily for 7 days) in a hypobaric chamber was investigated. Changes in the myocardial mass were evaluated on the basis of the dry heart weight and expressed as mg/100 g of total body weight (mean +/- SEM). Data are presented indicating that: chronic hypobaric hypoxia causes a significant degree of myocardial hypertrophy in rats; hypertrophic process involves both ventricles (the right more than the left); removal of the hypoxic stimulus leads to the disappearance of hypertrophy when evaluated as an increase in dry heart weight; hypoxia affects the synthesis of a significant amount of connective tissue in the left ventricle, which is not exposed to pressure load. The r?le of neurohumoral factors (i.e., adrenergic stimulation and catecholamines) in the development of the ventricular hypertrophy is suggested.  相似文献   

8.
We have previously demonstrated that the relative expression of myosin heavy chain-beta (MHC-β) in both ventricles of rats exposed to long-term hypobaric hypoxia correlated significantly with the relative ventricular mass. In the present study, we investigated whether an increased expression of MHC-β was accompanied by a reduction in cyclic AMP (cAMP) activity in hypoxia-induced hypertrophied right ventricle (RV). We used male Wistar–Kyoto rats born and raised at simulated altitudes (2200 m: H2 group or 4000 m: H4 group) compared to age-matched sea level controls (SC group). There were no significant differences between the groups in basal and forskolin-stimulated adenylyl cyclase (AC) activities. The basal and IBMX-inhibited phosphodiesterase (PDE) activities were slightly higher in both hypoxic groups (p>0.05), except that the H2 group had a higher basal PDE activity than the SC group (p<0.05). The AC/PDE activity ratios were significantly decreased in both hypoxic groups (p<0.05), suggesting that low concentrations of cellular cAMP were maintained in the RV under hypoxic conditions. However, there were no correlations between MHC-β expression and either AC activity, PDE activity, or AC/PDE activity ratio. These results provided evidence against the causal role for cAMP concentration in the expression of MHC-β associated with hypoxia-induced ventricular hypertrophy.  相似文献   

9.
10.
11.

Background

The present study investigated whether changes in gene expression in the right ventricle following pulmonary hypertension can be attributed to hypoxia or pressure loading.

Methodology/Principal Findings

To distinguish hypoxia from pressure-induced alterations, a group of rats underwent banding of the pulmonary trunk (PTB), sham operation, or the rats were exposed to normoxia or chronic, hypobaric hypoxia. Pressure measurements were performed and the right ventricle was analyzed by Affymetrix GeneChip, and selected genes were confirmed by quantitative PCR and immunoblotting. Right ventricular systolic blood pressure and right ventricle to body weight ratio were elevated in the PTB and the hypoxic rats. Expression of the same 172 genes was altered in the chronic hypoxic and PTB rats. Thus, gene expression of enzymes participating in fatty acid oxidation and the glycerol channel were downregulated. mRNA expression of aquaporin 7 was downregulated, but this was not the case for the protein expression. In contrast, monoamine oxidase A and tissue transglutaminase were upregulated both at gene and protein levels. 11 genes (e.g. insulin-like growth factor binding protein) were upregulated in the PTB experiment and downregulated in the hypoxic experiment, and 3 genes (e.g. c-kit tyrosine kinase) were downregulated in the PTB and upregulated in the hypoxic experiment.

Conclusion/Significance

Pressure load of the right ventricle induces a marked shift in the gene expression, which in case of the metabolic genes appears compensated at the protein level, while both expression of genes and proteins of importance for myocardial function and remodelling are altered by the increased pressure load of the right ventricle. These findings imply that treatment of pulmonary hypertension should also aim at reducing right ventricular pressure.  相似文献   

12.
模拟5000m中度缺氧时,大鼠右室功能显著加强,而左室功能加强不显著;左右心室肌原纤维Ca2+,Mg2+-ATP酶活性下降,肌球蛋白同功酶V2和V3百分含量增加,V1百分含量减少。8000m重度缺氧时,右室功能减弱,但无统计学意义,左室功能减弱有显著性;ATP酶活性和同功酶的变化超过5000m组。此外,右室ATP酶活性与PAP呈反比且有显著性,左室ATP酶活性与CASP虽也呈反比但无显著性;右室同功酶V3百分含量与PAP呈正比,左室同功酶V3百分含量与CASP不呈比例。上述结果表明,因短期突发严重缺氧引起的心肌供氧不足对左心室心肌的直接损伤作用大于右心室心肌。  相似文献   

13.
将大鼠置于不同模拟海拔高度低压舱内4d,观察其左、右心室功能代偿与失代偿的某些生物化学基础。结果表明,5000m中度缺氧4d使左、右心室功能、重量、心肌蛋白含量及Ca~(2 )-ATP酶活性均有不同程度的增高。提示机体在整体、心脏器官及心肌细胞分子各个水平的代偿机制均有加强。8000m重度缺氧4d后,左室重量增加,dp/dt_(max)与蛋白含量均下降,肌原纤维ATP酶活性则保持中度缺氧的代偿水平,提示左心功能似已受到损害。与此同时,右室蛋白含量虽也明显减少,但其ATP酶活性则继续增高,dp/dt_(max)未出现下降,表明右心功能仍具有相当的代偿能力。从而支持我们关于在短期内因供氧严重不足而造成的左室心肌的直接损伤作用大于右室心肌的推论。  相似文献   

14.

Background

Pulmonary arterial hypertension (PAH) is a proliferative arteriopathy associated with a glycolytic shift during heart metabolism. An increase in glycolytic metabolism can be detected in the right ventricle during PAH. Expression levels of glycolysis genes in the right ventricle during glycolysis that occur in monocrotaline (MCT)-induced pulmonary hypertension (PH) remain unknown.

Methods

PH was induced by a single subcutaneous injection of MCT (50 mg/kg) into rats, eventually causing right heart failure. Concurrently, a control group was injected with normal saline. The MCT-PH rats were randomly divided into three groups according to MCT treatment: MCT-2 week, 3 week, and 4 week groups (MCT-2w, 3w, 4w). At the end of the study, hemodynamics and right ventricular hypertrophy were compared among experimental groups. Expression of key glycolytic candidate genes was screened in the right ventricle.

Results

We observed an increase in mean pulmonary arterial pressure, right ventricular systolic pressure and right ventricular hypertrophy index three weeks following MCT injection. Alterations in the morphology and structure of right ventricular myocardial cells, as well as the pulmonary vasculature were observed. Expression of hexokinase 1 (HK1) mRNA began to increase in the right ventricle of the MCT-3w group and MCT-4w group, while the expression of lactate dehydrogenase A (LDHA) was elevated in the right ventricle of the MCT-4w group. Hexokinase 2(HK2), pyruvate dehydrogenase complex α1 (PDHα1), and LDHA mRNA expression showed no changes in the right ventricle. HK1 mRNA expression was further confirmed by HK1 protein expression and immunohistochemical analyses. All findings underlie the glycolytic phenotype in the right ventricle.

Conclusions

There was an increase in the protein and mRNA expression of hexokinase-1 (HK1) three and four weeks after the injection of monocrotaline in the right ventricle, intervention of HK1 may be amenable to therapeutic intervention.  相似文献   

15.
Hypoxia-inducible factor-1alpha subunit (HIF-1alpha) plays a pivotal role during the development of hypoxia-induced pulmonary hypertension (HPH) by transactivating it' target genes. As an oxygen-sensitive attenuator, factor inhibiting HIF-1 (FIH) hydroxylates a conserved asparagine residue within the C-terminal transactivation domain of HIF-1alpha under normoxia and moderate hypoxia. FIH protein is downregulated in response to hypoxia, but its dynamic expression and role during the development of HPH remains unclear. In this study, an HPH rat model was established. The mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. The pulmonary artery remodeling index became evident after 7 d of hypoxia, while the right ventricular hypertrophy index became significant after 14 d of hypoxia. The messenger RNA (mRNA) and protein expression of HIF-1alpha and vascular endothelial growth factor (VEGF), a well-characterized target gene of HIF-1alpha, were markedly upregulated after exposure to hypoxia in pulmonary arteries. FIH protein in lung tissues declined after 7 d of hypoxia and continued to decline through the duration of hypoxia. FIH mRNA had few changes after exposure to hypoxia compared with after exposure to normoxia. In hypoxic rats, FIH protein showed significant negative correlation with VEGF mRNA and VEGF protein. FIH protein was negatively correlated with mean pulmonary arterial pressure, pulmonary artery remodeling index and right ventricular hypertrophy index. Taken together, our results suggest that, in the pulmonary arteries of rat exposed to moderate hypoxia, a time-dependent decrease in FIH protein may contribute to the development of rat HPH by enhancing the transactivation of HIF-1alpha target genes such as VEGF.  相似文献   

16.
Excessive reactive oxygen species (ROS) are toxic to hematopoietic cells. The majority of cellular ROS are derived from mitochondria and glucose metabolism, and cytokines stimulate this process. During hypoxia, hypoxia inducible factor-1 (HIF-1) attenuates hypoxia-induced mitochondrial ROS production through the induction of pyruvate dehydrogenase kinase-1 (PDK-1). Previously, we found that thrombopoietin (TPO) induces the generation of mitochondrial ROS. Interestingly, the TPO-induced production of mitochondrial ROS promotes the activation of HIF-1. Based on these findings, we speculated that TPO-activated HIF-1 functions as a feedback mechanism to block the overproduction of ROS following TPO stimulation. We found that TPO induces the expression of PDK-1 in a TPO-dependent cell line, UT-7/TPO, in a HIF-1-dependent manner. Inhibition of either HIF-1 or PDK-1 resulted in the increased production of ROS following TPO stimulation. Our observations suggest that HIF-1 functions as a ROS sensor to prevent the overproduction of mitochondrial ROS following cytokine stimulation.  相似文献   

17.
Myocardial neural cell adhesion molecule (N-CAM) is temporally regulated, being expressed during cardiac morphogenesis and innervation and suppressed in the adult heart. We have investigated the plasticity of N-CAM expression in hypertrophic muscle using the rat model of chronic hypoxia to selectively induce right ventricular hypertrophy over a 14 day time course. Sarcolemmal and intercalated disc N-CAM immunostaining was more extensive in the ventricular myocardium of hypoxic rats compared to normoxic controls. Quantitative assessment of the immunoreactivity in tissue extracts demonstrated a selective increase in the amount of N-CAM immunoreactivity in the hypertrophic myocardium of the right ventricle of rats exposed to hypoxia and this was associated with an increase of the 125 kDa isoform. We conclude that myocardial hypertrophy may be a factor influencing N-CAM expression in the heart and adhesion molecules may have a role in cardiac remodelling.  相似文献   

18.
19.
20.
The present study utilized a novel transgenic mouse model that expresses an inducible dominant negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII mouse) to test the hypothesis that TGF-beta signaling plays an important role in the pathogenesis of chronic hypoxia-induced increases in pulmonary arterial pressure and vascular and alveolar remodeling. Nine- to 10-wk-old male DnTGFbetaRII and control nontransgenic (NTG) mice were exposed to normobaric hypoxia (10% O2) or air for 6 wk. Expression of DnTGFbetaRII was induced by drinking 25 mM ZnSO4 water beginning 1 wk before hypoxic exposure. Hypoxia-induced increases in right ventricular pressure, right ventricular mass, pulmonary arterial remodeling, and muscularization were greatly attenuated in DnTGFbetaRII mice compared with NTG controls. Furthermore, the stimulatory effects of hypoxic exposure on pulmonary arterial and alveolar collagen content, appearance of alpha-smooth muscle actin-positive cells in alveolar parenchyma, and expression of extracellular matrix molecule (including collagen I and III, periostin, and osteopontin) mRNA in whole lung were abrogated in DnTGFbetaRII mice compared with NTG controls. Hypoxic exposure had no effect on systemic arterial pressure or heart rate in either strain. These data support the hypothesis that endogenous TGF-beta plays an important role in pulmonary vascular adaptation to chronic hypoxia and that disruption of TGF-beta signaling attenuates hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, pulmonary arterial hypertrophy and muscularization, alveolar remodeling, and expression of extracellular matrix mRNA in whole lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号