首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hyperosmotic stress activates Na+-K+-2Cl- cotransport (NKCC1) in secretory epithelia of the airways. NKCC1 activation was studied as uptake of 36Cl or 86Rb in human tracheal epithelial cells (HTEC). Application of hypertonic sucrose or NaCl increased bumetanide-sensitive ion uptake but did not affect Na+/H+ and Cl-/OH-(HCO3-) exchange carriers. Hyperosmolarity decreased intracellular volume (Vi) after 10 min from 7.8 to 5.4 microl/mg protein and increased intracellular Cl- (Cl-i) from 353 to 532 nmol/mg protein. Treatment with an alpha-adrenergic agent rapidly increased Cl-i and Vi in a bumetanide-sensitive manner, indicating uptake of ions by NKCC1 followed by osmotically obligated water. These results indicate that HTEC act as osmometers but lose intracellular water slowly. Hyperosmotic stress also increased the activity of PKC-delta and of the extracellular signal-regulated kinase ERK subgroup of the MAPK family. Activity of stress-activated protein kinase JNK was not affected by hyperosmolarity. PD-98059, an inhibitor of the ERK cascade, reduced ERK activity and bumetanide-sensitive 36Cl uptake. PKC inhibitors blocked activation of ERK indicating that PKC may be a downstream activator of ERK. The results indicate that hyperosmotic stress activates NKCC1 and this activation is regulated by PKC-delta and ERK.  相似文献   

2.
In mammalian cells, Na(+)-K(+)-2Cl- cotransporter activity participates in regulation of ion and volume homeostasis. This makes NKCC indispensable for normal cell growth and proliferation. We recently reported the existence of two mechanisms that can regulate NKCC activity in mature skeletal muscle. In isosmotic conditions, signaling through ERK MAPK pathway is necessary, while inhibition of the cAMP-dependent protein kinase A (PKA) pathway stimulates NKCC activity during hyperosmotic challenge. Both pathways are involved in regulating cell proliferation in wide variety of cells of epithelial and non-epithelial origin, so we tested which pathway regulated NKCC activity in cultured cells. In cultured rat skeletal muscle (L6) and intestinal epithelial (IEC-6) cells, NKCC activity in the basal state comprised 30 to 50% of total potassium influx, assessed as bumetanide-sensitive 38Rb-uptake. This NKCC activity could not be abolished by inhibitors of ERK MAPK (PD98059 and U0126), PKC (GF109203X), or PI 3-K (wortmannin, LY294002). In L6 myoblasts and in IEC-6 cells, elevation of cAMP levels with isoproterenol or forskolin led to a 60% inhibition on NKCC activity. In contrast, incubation of IEC-6 cells with the PKA-inhibitor H-89 resulted in 50% increase of NKCC activity compared with the basal level. In conclusion, it appears that in cultured cells the cAMP--PKA pathway regulates NKCC activity. This resembles hyperosmotic regulation of NKCC activity.  相似文献   

3.
This study investigated exercise adaptation of signaling mechanisms that control Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in rat skeletal muscle. An acute bout of exercise increased total and NKCC-mediated (86)Rb influx. Inhibition of extracellular signal-regulated kinase (ERK) activation abolished the exercise-induced NKCC upregulation. Treadmill training (20 m/min, 20% grade, 30 min/day, 5 days/wk) stimulated total (86)Rb influx and increased NKCC activity in the soleus muscle after 2 wk and in the plantaris muscle after 4 wk. Exercise-induced NKCC activity was associated with a 1.4- to 2-fold increase in ERK phosphorylation. Isoproterenol, which activates ERK and NKCC in sedentary muscle, caused a remarkable inhibition of the exercise-induced NKCC activity. Furthermore, isoproterenol inhibition of exercise-induced NKCC activity was accompanied with decreased ERK phosphorylation in the plantaris muscle. Akt (protein kinase B) phosphorylation on both Thr(308) and Ser(473), which activates Akt and inhibits NKCC activity in sedentary muscle, was stimulated by acute and chronic exercise. This Akt activation was unaffected by isoproterenol. These results indicate an immediate and persistent exercise adaptation of the signal pathways that participate in the control of potassium transport.  相似文献   

4.
The stimulation of the alpha(1)-adrenergic receptor with phenylephrine results in the significant extrusion of Mg(2+) from the rat heart and cardiomyocytes. Phenylephrine-induced Mg(2+) extrusion is prevented by the removal of extracellular Ca(2+) or by the presence of Ca(2+)-channel blockers such as verapamil, nifedipine, or (+)BAY-K8644. Mg(2+) extrusion is almost completely inhibited by PD98059 (a MAP kinase inhibitor). The simultaneous addition of 5mM Ca(2+) and phenylephrine increases the extrusion of Mg(2+) from perfused hearts and cardiomyocytes. This Mg(2+) extrusion is inhibited by more than 90% when the hearts are preincubated with PD98059. ERKs are activated by perfusion with either phenylephrine or 5mM Ca(2+). This ERK activation is inhibited by PD98059. Overall, these results suggest that stimulating the cardiac alpha(1)-adrenergic receptor by phenylephrine causes the extrusion of Mg(2+) via the Ca(2+)-activated, Na(+)-dependent transport pathway, and the ERKs assists in Mg(2+) transport in the heart.  相似文献   

5.
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.  相似文献   

6.
Little is knownabout the function and regulation of theNa+-K+-2Clcotransporter NKCC1 in vascular smooth muscle. Theactivity of NKCC1 was measured as the bumetanide-sensitive efflux of86Rb+from intact smooth muscle of the rat aorta. Hypertonic shrinkage (440 mosmol/kgH2O) rapidlydoubled cotransporter activity, consistent with its volume-regulatoryfunction. NKCC1 was also acutely activated by the vasoconstrictors ANGII (52%), phenylephrine (50%), endothelin (53%), and 30 mM KCl(54%). Both nitric oxide and nitroprusside inhibited basal NKCC1activity (39 and 34%, respectively), and nitroprussidecompletely reversed the stimulation by phenylephrine. Thephosphorylation of NKCC1 was increased by hypertonic shrinkage, phenylephrine, and KCl and was reduced by nitroprusside. The inhibition of NKCC1 significantly reduced the contraction of rat aorta induced byphenylephrine (63% at 10 nM, 26% at 30 nM) but not by KCl. Weconclude that theNa+-K+-2Clcotransporter in vascular smooth muscle is reciprocally regulated byvasoconstrictors and nitrovasodilators and contributes to smooth musclecontraction, indicating that alterations in NKCC1 could influencevascular smooth muscle tone in vivo.

  相似文献   

7.
Previous studies have provided evidence that, in the early hours of ischemic stroke, a luminal membrane blood-brain barrier (BBB) Na-K-Cl cotransporter (NKCC) participates in ischemia-induced cerebral edema formation. Inhibition of BBB NKCC activity by intravenous bumetanide significantly reduces edema and infarct in the rat permanent middle cerebral artery occlusion model of ischemic stroke. We demonstrated previously that the BBB cotransporter is stimulated by hypoxia, aglycemia, and AVP, factors present during cerebral ischemia. However, the underlying mechanisms have not been known. Ischemic conditions have been shown to activate p38 and JNK MAP kinases (MAPKs) in brain, and the p38 and JNK inhibitors SB-239063 and SP-600125, respectively, have been found to reduce brain damage following middle cerebral artery occlusion and subarachnoid hemorrhage, respectively. The present study was conducted to determine whether one or both of these MAPKs participates in ischemic factor stimulation of BBB NKCC activity. Cultured cerebral microvascular endothelial cell NKCC activity was evaluated as bumetanide-sensitive (86)Rb influx. Activities of p38 and JNK were assessed by Western blot and immunofluorescence methods using antibodies that detect total vs. phosphorylated (activated) p38 or JNK. We report that p38 and JNK are present in cultured cerebral microvascular endothelial cells and in BBB endothelial cells in situ and that hypoxia (7% O(2) and 2% O(2)), aglycemia, AVP, and O(2)-glucose deprivation (5- to 120-min exposures) all rapidly activate p38 and JNK in the cells. We also provide evidence that SB-239063 and SP-600125 reduce or abolish ischemic factor stimulation of BBB NKCC activity. These findings support the hypothesis that ischemic factor stimulation of the BBB NKCC involves activation of p38 and JNK MAPKs.  相似文献   

8.
Three splice variants of the renal Na-K-Cl cotransporter (NKCC2 F, A, and B) are spatially distributed along the thick ascending limb of the mammalian kidney. To test whether NKCC2 splice variants differ in ion transport characteristics we expressed cDNAs encoding rabbit NKCC2 F, A, and B in Xenopus oocytes and determined the ion dependence of bumetanide-sensitive (86)Rb influx. The three splice variants of NKCC2 showed dramatic differences in their kinetic behavior. The medullary variant F exhibited 3-4-fold lower affinity than variants A and B for Na(+) and K(+). Chloride affinities also markedly distinguish the three variants (K(m)F = 111.3, K(m)A = 44.7, and K(m)B = 8.9 mm Cl(-)). Thus, the kinetic properties of the NKCC2 splice variants are consistent with the spatial distribution of the variants along the thick ascending limb as they are involved in reabsorbing Na(+), K(+), and Cl(-) from a progressively diluted fluid in the tubule lumen. Variant B also showed an anomalous inhibition of rubidium influx at high extracellular Na(+) concentrations, possibly important in its highly specialized role in the macula densa. The adaptation of the kinetic characteristics of the NKCC2 variants to the luminal concentrations of substrate represents an excellent example of functional specialization and diversity that can be achieved through alternative mRNA splicing.  相似文献   

9.
The Na-K-2Cl cotransporter (NKCC1) is one of several transporters that have been linked to hypertension, and its inhibition reduces vascular smooth muscle tone and blood pressure. NKCC1 in the rat aorta is stimulated by vasoconstrictors and inhibited by nitrovasodilators, and this is linked to the contractile state of the smooth muscle. To determine whether blood pressure also regulates NKCC1, we examined the acute effect of hypertension on NKCC1 in rats after aortic coarctation. In the hypertensive aorta (28-mmHg rise in mean blood pressure), an increase in NKCC1 activity (measured as bumetanide-sensitive (86)Rb efflux) was apparent by 16 h and reached a plateau of 62% greater than control at 48 h. In contrast, there was a slight decrease in NKCC1 activity in the hypotensive aorta (21% decrease in mean blood pressure). Measurement of NKCC1 mRNA by real-time PCR revealed a fivefold increase in the hypertensive aorta compared with the hypotensive aorta or sham aorta. The inhibition by bumetanide of isometric force response to phenylephrine was significantly greater in the hypertensive aorta than in the control aorta or hypotensive aorta. We conclude that NKCC1 in rat aortic smooth muscle is regulated by blood pressure, most likely through changes in transporter abundance. This upregulation of NKCC1 is associated with a greater contribution to force generation in the hypertensive aorta. This is the first demonstration that NKCC1 in vascular smooth muscle is regulated by blood pressure and indicates that this transporter is important in the acute response of vascular smooth muscle to hypertension.  相似文献   

10.
In a previous work, we have shown that overexpression of the Na(+)/K(+)/Cl(-) cotransporter (NKCC1) induces cell proliferation and transformation. We investigate in the present study the role of the NKCC1 in the mitogenic signal transduction. We show that overexpression of the cotransporter gene (NKCC1) in stablely transfected cells (Balb/c-NKCC1), resulted in enhanced phosphorylation of the extracellular regulated kinase (ERK) to produce double phosphorylated ERK (DP-ERK). Furthermore, the level of DP-ERK was reduced by 50-80% following the addition of bumetanide, a specific inhibitor of the Na(+)/K(+)/Cl(-) cotransporter, in quiescent as well as in proliferating cultures of the Balb/c-NKCC1 clone. In order to explore further the role of the Na(+)/K(+)/Cl(-) cotransporter in mitogenic signal transduction, we measured the effect of the two specific inhibitors of the cotransporter; bumetanide and furosemide, on DP-ERK level in immortalized non-transformed cells. In Balb/c 3T3 fibroblasts stimulated with FGF, bumetanide, and furosemide inhibited 50-60% of the ERK 1/2 phosphorylation. The inhibitor concentration needed for maximal inhibition of ERK 1/2 phosphorylation was similar to the concentration needed to block the K(+) influx mediated by the Na(+)/K(+)/Cl(-) cotransporter in these cells. To analyze whether the Na(+)/K(+)/Cl(-) cotransporter has a role in the mitogenic signal of normal cells, we measured the effect of bumetanide on ERK phosphorylation in human peripheral blood lymphocytes. The phosphorylation of ERK 1/2 in resting human lymphocytes, as well as in lymphocytes stimulated with phytohemagglutinin (PHA) was inhibited by bumetanide. The effect of bumetanide on ERK 2 phosphorylation was much lower than that of ERK 1 phosphorylation. The finding that the Na(+)/K(+)/Cl(-) cotransporter controls the ERK/MAPK (mitogen-activated protein kinase) signal transduction pathway, support our hypothesis that Na(+) and K(+) influxes mediated by this transporter plays a central role in the control of normal cell proliferation. Exploring the cellular ionic currents and levels, mediated by the Na(+)/K(+)/Cl(-) cotransporter, should lead to a better comprehension of cell proliferation and transformation machinery.  相似文献   

11.
The bumetanide-sensitive component of pHi recovery from an NH4Cl-induced acute alkaline load was used as a measure of Na(+)-K(+)-2Cl- cotransport activity in rat parotid acini. Acinar treatment with NaF/AlCl3 (15 mM NaF plus 10 microM AlCl3) induced a 5-fold stimulation in the initial rate of bumetanide-sensitive pHi recovery. This effect was dependent on NaF concentration (K1/2 approximately 7 mM) and was blunted in the presence of the Al3+ chelator desferal mesylate suggesting that it might be due to the aluminofluoride ion, AlF-4. NaF/AlCl3 treatment did not increase acinar intracellular cAMP levels but did result in an increase in intracellular calcium concentration (from 87 +/- 5 to 181 +/- 2 nM) and in acinar cell shrinkage (12 +/- 1%). But the stimulation of the Na(+)-K(+)-2Cl- cotransporter by NaF/AlCl3 persisted in acini which had been depleted of their intracellular Ca2+ stores. In these acini no effect of NaF/AlCl3 on intracellular calcium or cell volume was observed, indicating that stimulation of the cotransporter was not secondary to either of these phenomena. The effect of NaF/AlCl3 on the cotransporter was blocked by the protein kinase inhibitor K252a indicating the involvement of a protein phosphorylation event. This result is consistent with either NaF/AlCl3-dependent protein kinase activation or phosphatase inhibition. The stimulation of the cotransporter by NaF/AlCl3 was mimicked by the protein phosphatase inhibitor calyculin A; however, this effect was not blocked by K252a suggesting that a different protein kinase from that associated with NaF/AlCl3 may be involved. The data indicate that the Na(+)-K(+)-2Cl- cotransporter in this tissue is under tight regulatory control, in all likelihood via multiple protein kinase/phosphatase systems. The physiological roles of these regulatory events in modulating acinar fluid secretion driven by the Na(+)-K(+)-2Cl- cotransporter remain to be elucidated.  相似文献   

12.
We examined the ability of SV40-immortalized human and rabbit corneal epithelial cells (HCEC and RCEC, respectively) to adapt to chronic hypertonic stress. Under isotonic conditions, in the presence of 50 μm bumetanide, proliferation measured as 3H-thymidine incorporation declined in RCEC and HCEC by 8 and 35%, respectively. After 48 hr exposure to 375 mOsm medium, RCEC proliferation fell by 19% whereas in HCEC it declined by 45%. Light scattering behavior demonstrated that both cell lines mediate nearly complete regulatory volume increase (RVI) responses to an acute hypertonic (375 mOsm) challenge, which in part depend on bumetanide-sensitive Na-K-2Cl cotransporter (NKCC) activity. Following exposing RCEC for 48 hr to 375 mOsm medium, their RVI response to an acute hypertonic challenge was inhibited by 17%. However, in HCEC this response declined by 68%. During exposure to 375 mOsm medium for up to 24 hr, only RCEC upregulated NKCC gene and protein expression as well as bumetanide-sensitive 86Rb influx. These increases are consistent with the smaller declines in RVI and proliferation capacity occurring during this period in RCEC than in HCEC. Therefore, adaptation by RCEC to chronic hypertonic stress is dependent on stimulation of NKCC gene and protein expression and functional activity. On the other hand, under isotonic conditions, HCEC RVI and proliferation are more dependent on NKCC activity than they are in RCEC. Received: 7 March 2000/Revised: 18 May 2000  相似文献   

13.
The TRPC family of non-selective cation channels has been suggested to play a key role in the responses to alpha1-adrenoceptor stimulation of vascular smooth muscle. However, there are still very few reports of non-selective cation currents activated by alpha1-AR in resistance arteries. Here, we examine the expression of TRPC channels and the currents activated by alpha1-adrenoceptors in rat mesenteric resistance artery smooth muscle. Messenger RNA and protein for TRPC1, TRPC3 and TRPC6 were detected within the arteries by RT-PCR and immunoblotting. Endothelial and adventitial layers were found to express the TRPC1, TRPC3 and TRPC6 proteins whereas only TRPC1 and TRPC6 were detected in the arterial smooth muscle by confocal immunofluorescence microscopy. In whole-cell patch-clamp recordings from isolated mesenteric arterial myocytes, an outwardly rectifying non-selective cation current was activated by both the alpha1-adrenoceptor agonist, phenylephrine (10 microM), and the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol (100 microM). Responses to 1-oleoyl-2-acetyl-sn-glycerol were not blocked, but increased, following inhibition of protein-kinase-C with either bisindolylmaleimide-I (1 microM) or chelerythrine (1 microM). The currents activated by both phenylephrine and 1-oleoyl-2-acetyl-sn-glycerol were inhibited by Gd3+ (100 microM) but potentiated by flufenamic acid (100 microM). Collectively, these findings demonstrate for the first time the expression of TRPC1 and TRPC6 in rat mesenteric artery smooth muscle and the existence in rat isolated mesenteric arterial myocytes of a TRPC-like non-selective cation current activated by alpha1-adrenoceptor stimulation and 1-oleoyl-2-acetyl-sn-glycerol.  相似文献   

14.
The heart is a resistin target tissue and can function as an autocrine organ. We sought to investigate whether cyclic mechanical stretch could induce resistin expression in cardiomyocytes and to test whether there is a link between the stretch-induced TNF-alpha and resistin. Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Cyclic stretch significantly increased resistin protein and mRNA expression after 2-18 h of stretch. Addition of PD-98059, TNF-alpha antibody, TNF-alpha receptor antibody, and ERK MAP kinase small interfering RNA 30 min before stretch inhibited the induction of resistin protein. Cyclic stretch increased, whereas PD-98059 abolished, the phosphorylated ERK protein. Gel-shift assay showed a significant increase in DNA-protein binding activity of NF-kappaB after stretch, and PD-98059 abolished the DNA-protein binding activity induced by cyclic stretch. DNA binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased resistin promoter activity, whereas PD-98059 and p65 antibody decreased resistin promoter activity. Cyclic stretch significantly increased TNF-alpha secretion from myocytes. Recombinant resistin protein and conditioned medium from stretched cardiomyocytes reduced glucose uptake in cardiomyocytes, and recombinant small interfering RNA of resistin or TNF-alpha antibody reversed glucose uptake. In conclusion, cyclic mechanical stretch enhances resistin expression in cultured rat neonatal cardiomyocytes. The stretch-induced resistin is mediated by TNF-alpha, at least in part, through ERK MAP kinase and NF-kappaB pathways. Glucose uptake in cardiomyocytes was reduced by resistin upregulation.  相似文献   

15.
Na(+)/K(+)/Cl(-) cotransporter activity is stimulated in early G(1) phase of the cell cycle and this stimulation was shown to be an essential event in fibroblast cell proliferation. In order to elucidate further the role of the Na(+)/K(+)/Cl(-) cotransporter in cell proliferation, we overexpressed the gene encoding the Na(+)/K(+)/Cl(-) cotransporter in mouse fibroblasts, and analyzed cellular phenotypic changes. Mouse Balb/c 3T3 cells were stably transfected with the cDNA of the shark rectal gland Na(+)/K(+)/Cl(-) cotransporter gene (NKCC1), and expressed in a mammalian vector under the cytomegalovirus promoter (Balb/c-NKCC1 cells). The transfected cells exhibited up to 10-fold greater bumetanide-sensitive Rb(+) influx compared to the control cells. The Balb/c-NKCC1 cells have acquired a typical transformation phenotype indicated by: (1) Loss of contact inhibition exhibited by growth to a higher cell density in confluent cultures, and formation of cell foci; (2) proliferation in low serum concentrations; and (3) formation of cell colonies in soft agar. The control cells transfected with the NKCC1 gene inserted in the opposite orientation in the vector retained their normal phenotype. Furthermore, the two specific inhibitors of the Na(+)/K(+)/Cl(-) cotransporter activity; bumetanide and furosemide inhibited the clonogenic efficiency in the NKCC1 transfected cells. These control experiments indicate that the apparent transformation phenotype acquired by the Balb/c-NKCC1 cells was not merely associated with the process of transfection and selecting for the neomycin-resistant clones, but rather with the overexpression of the Na(+)/K(+)/Cl(-) cotransporter gene. In order to ascertain that the regulated and normal expression of the Na(+)/K(+)/Cl(-) cotransporter control cell proliferation, the effect of bumetanide a specific inhibitor of the cotransporter, was tested on Balb/c 3T3 cell proliferation, induced by fibroblasts growth factor (FGF) and fetal calf serum (FCS). Bumetanide inhibited synchronized Balb/c 3T3 cell exit from the G(0)/G(1) arrest and entering S-phase. The inhibition was reversible, as removal of bumetanide completely released cell proliferation. Taken together, these results propose that the NKCC1 gene is involved in the control of normal cell proliferation, while its overexpression results in apparent cell transformation, in a manner similar to some protooncogenes.  相似文献   

16.
The sodium hydrogen exchanger isoform 1 (NHE1) is present in nearly all cells. Regulation of proton flux via the exchanger is a permissive step in cell growth and tumorgenesis and is vital in control of cell volume. The regulation of NHE1 by growth factors involves the Ras-extracellular signal regulated kinase (ERK) pathway, however, the mechanism for G protein-coupled receptor (GPCR) activation of NHE1 is not well established. In this report, the relationship between GPCRs, ERK, and NHE1 in CCL39 cells is investigated. We give evidence that two agonists, the specific alpha(1)-adrenergic agonist, phenylephrine and the water-soluble lipid mitogen, lysophosphatidic acid (LPA) activate NHE1 in CCL39 cells. Activation of ERK by phenylephrine and LPA occurs in a dose- and time-dependent manner. Optimal ERK activation was observed at 10 min and displayed a maximum stimulation at 100 microM phenylephrine and 10 microM LPA. alpha(1)-Adrenergic stimulation also led to a rise in steady-state pH(i) of 0.16+/-0.02 pH units, and incubation with LPA induced a 0.43+/-0.06 pH unit increase in pH(i). Phenylephrine-induced activation of NHE1 transport and ERK activity was inhibited by pretreating the cells with the MEK inhibitor PD98059. While only half of the LPA activatable exchange activity was abolished by PD98059 and U0126. To further demonstrate the specificity of the phenylephrine and LPA regulation of NHE1 and ERK, CCL39 cells were transfected with a kinase inactive MEK. The data indicate that ERK activation is essential for phenylephrine stimulation of NHE1, and that ERK and RhoA are involved in LPA stimulation of NHE1 by more than one mechanism. In addition, evidence of the convergence of these two pathways is shown by the loss of NHE1 activity when both pathways are inhibited and by the partial additivity of the two agonists on ERK and NHE1 activity. These studies indicate a direct involvement of ERK in the alpha(1)-adrenergic activation of NHE1 and a significant role for both ERK and RhoA in LPA stimulation of NHE1 in CCL39 fibroblasts.  相似文献   

17.
Cystic fibrosis (CF) airway epithelial cells have a reduced mass of ether-linked diacylglycerols which might alter protein kinase C (PKC)-regulated Cl secretion. PKC regulation of basolateral Na-K-2Cl cotransport (NKCC1) was investigated in CF nasal polyp epithelial cells and a CF/T43 cell line to ascertain whether PKC signaling was altered in CF. NKCC1 was detected as bumetanide-sensitive (86)Rb influx. Methoxamine, a alpha(1)-adrenergic agonist, increased PKC activity in cytosol and a particulate fraction for a prolonged time period, as predicted from previous studies on the generation of diglycerides induced with methoxamine. Short-term stimulation of CF/T43 cells for 40 s promoted a shift in PKC-delta and -zeta to a particulate fraction, increased activity of immune complexes of cytosolic PKC-delta and of particulate PKC-zeta and increased activity of NKCC1. Pretreatment with antisense oligonucleotide to PKC-delta blocked methoxamine-stimulated PKC-delta activity, reduced PKC-delta mass by 61.4%, and prevented methoxamine-stimulated activity of NKCC1. Sense and missense oligonucleotide to PKC-delta and antisense oligonucleotide to PKC-zeta did not alter expression of PKC-delta or the effects of methoxamine. These results demonstrate that PKC-delta-dependent activation of NKCC1 is preserved in CF cells and suggest that regulation of NKCC1 is independent of low ether-linked diglyceride mass.  相似文献   

18.
19.
In this study we have characterized the bumetanide-sensitive K+/Na+/Cl- cotransport in cultured rat cardiac myocytes. 1) It carries about 10% of the total K+ influx. 2) It is sensitive to furosemide (Ki0.5 = 10(-6)M) and bumetanide (Ki0.5 = 10(-7)M). 3) It is strongly dependent on the extracellular concentrations of Na+ and Cl-. 4) It carries out influx of both ions, K+ and Na+. A therapeutic concentration of ouabain (10(-7) M) stimulated the bumetanide-sensitive K+ influx (as measured by 86Rb+), in the cultured myocytes, with no effect on the bumetanide-resistant K+ influx, which was mediated mostly by the Na+/K+ pump. Stimulation of the bumetanide-sensitive Rb+ influx by a low ouabain concentration was strongly dependent on Na+ and Cl- in the extracellular medium. A low concentration of ouabain (10(-7) M) was found to increase the steady-state level of cytosolic Na+ by 15%. This increase was abolished by the addition of bumetanide or furosemide. These findings suggest that ouabain, at a low (10(-7) M) concentration, induced its positive inotropic effect in rat cardiac myocytes by increasing Na+ influx into the cells through the bumetanide-sensitive Na+/K+/Cl- cotransporter. In order to examine this hypothesis, we measured the effect of bumetanide on the increased amplitude of systolic cell motion induced by ouabain. Bumetanide or furosemide, added to cultured cardiac myocytes, inhibited the increased amplitude of systolic cell motion induced by ouabain. Neither bumetanide nor furosemide alone has any significant effect on the basal amplitude of systolic cell motion. We propose that stimulation of bumetanide-sensitive Na+ influx plays an essential role in the positive inotropic effect in rat cardiac myocytes induced by low concentration of ouabain.  相似文献   

20.
In interleukin-2 (IL-2)-induced human blood lymphocytes, the Na+/K+ pump function (assessed by ouabain-sensitive Rb+ influx), the abundance of Na+, K+-ATPase alpha1-subunit (determined by Western blotting) and the alpha1- and beta1-subunits mRNA of Na+, K+-ATPase (RT-PCR), as well as the phosphorylation of STAT5 and STAT3 family proteins and ERK1/2 kinase have been examined. A 3.5-4.0-fold increase in the expression of alpha1- and beta1-subunits mRNA of Na+, K+-ATPase was found at 24 h of IL-2 stimulation. The inhibitors of JAK3 kinase (B-42, WHI-P431) was shown to decrease both the phosphorylation of STATs and the rise in the oubain-sensitive rubidium influx as well as the increased abundance of Na+, K+-ATPase alpha1-subunit. The inhibition of the protein kinases ERK1/2 by PD98059 (20 microM) suppressed the alpha1-subunit accumulation. All the kinase inhibitors tested did not alter the intracellular content ofmonovalent cations in resting and IL-2-stimulated lymphocytes. It is concluded that MAPK and JAK/STAT signaling pathways mediate the IL-2-dependent regulation of the Na+, K+-ATPase expression during the lymphocyte transition from resting stage to proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号