首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to assess hemodynamics and myocardial function at 18 h after injury caused by cecal ligation and puncture (CLP) in CD8-knockout mice treated with anti-asialoGM1 (CD8KO/alphaAsGM1 mice). Arterial pressure was measured by carotid artery cannulation, and left ventricular pressure-volume measurements were obtained by use of a 1.4-Fr conductance catheter. Blood acid-base balance and indexes of hepatic, renal, and pulmonary injury were also measured. CD8KO/alphaAsGM1 mice exhibited higher mean arterial pressure and increased systemic vascular resistance compared with wild-type mice. Cardiac output was significantly decreased in wild-type, but not CD8KO/alphaAsGM1, mice compared with sham controls. Myocardial function was better preserved in CD8KO/alphaAsGM1 mice as indicated by less impairment of left ventricular pressure development over time, time varying maximum elastance, end-systolic pressure-volume relationship, and preload recruitable stroke work. The impairment in myocardial function was associated with induction of proinflammatory cytokine mRNAs in the hearts of wild-type mice. The hemodynamic derangements in wild-type mice were coupled with significant metabolic acidosis and elevated serum creatinine levels. Overall, this study shows that cardiovascular collapse and shock characterized by hypotension, myocardial depression, low systemic vascular resistance, and metabolic acidosis occurs after CLP in wild-type mice but is attenuated in CD8KO/alphaAsGM1 mice. These observations likely explain, in part, the previously observed survival advantage of CD8KO/alphaAsGM1 mice following CLP.  相似文献   

2.
Our previous studies showed that beta(2)-microglobulin knockout mice treated with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential mechanisms of injury include systemic infection, cecal ischemia, and translocation of bacterial toxins such as endotoxin and superantigens. Currently, it is unclear which of these mechanisms of injury contributes to mortality in wild-type mice and whether beta2MKO/alphaAsGM1 mice are resistant to any particular mechanisms of injury. In the present study, we hypothesized that systemic infection is the major cause of injury after CLP in wild-type mice and that beta2MKO/alphaAsGM1 mice are resistant to infection-induced injury. To test this hypothesis, wild-type and beta2MKO/alphaAsGM1 mice were treated with the broad-spectrum antibiotic imipenem immediately after CLP to decrease the impact of systemic infection in our model. Treatment of wild-type and beta2MKO/alphaAsGM1 mice with imipenem decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and had significant hypothermia, metabolic acidosis, and high plasma concentrations of the cytokines interleukin-6, macrophage inflammatory protein-2, and keratinocyte-derived chemokine. beta2MKO/alphaAsGM1 mice showed 40% long-term survival, which was increased to 90% by imipenem treatment. beta2MKO/alphaAsGM1 mice had less hypothermia, decreased metabolic acidosis, and lower cytokine concentrations at 18 h after CLP compared with wild-type mice. These results suggest that infection is not the major cause of mortality for wild-type mice in our model of CLP. Other mechanisms of injury such as cecal ischemia or translocation of microbial toxins may be more important. beta2MKO/alphaAsGM1 mice appear resistant to these early, non-infection-related causes of CLP-induced injury but showed delayed mortality associated with bacterial dissemination, which was ablated by treatment with imipenem.  相似文献   

3.
CD8 knockout mice depleted of natural killer (NK) cells by treatment with anti-asialoGM1 (CD8KO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential sources of injury include bacterial dissemination, cecal ischemia, and translocation of bacterial toxins. We treated wild-type and CD8KO/alphaAsGM1 mice with imipenem after CLP to decrease bacterial dissemination. Additional mice were subjected to cecal ligation without puncture of the cecal wall or cecal ligation and removal of cecal contents. Imipenem treatment decreased bacterial counts by at least two orders of magnitude. However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and exhibited significant hypothermia, metabolic acidosis, and high plasma cytokine concentrations. Wild-type mice subjected to cecal ligation without puncture also died, despite very low bacterial counts in blood, but wild-type mice subjected to cecal ligation and washout of cecal contents survived. In CD8KO/alphaAsGM1 mice subjected to CLP, imipenem treatment increased survival from 50% to 100%. After cecal ligation without puncture, long-term survival was 80-90% in CD8KO/alphaAsGM1 mice. Hypothermia, metabolic acidosis, and cytokine production were attenuated in CD8KO/alphaAsGM1 mice compared with wild-type controls. These results indicate that bacterial dissemination is not a major source of injury in wild-type mice after CLP, but the presence of gut flora in the cecal lumen is required for induction of systemic inflammation after cecal injury. CD8KO/alphaAsGM1 mice are resistant to the systemic manifestations of cecal injury.  相似文献   

4.
P W Armstrong 《CMAJ》1979,121(7):913-918
Optimal therapy for congestive cardiac failure requires identification of correctable factors that aggravate it as well as an understanding of its etiology. Increased sympathetic nervous system activity, reduced renal blood flow, and cardiac hypertrophy and dilation are the main compensatory processes that occur in response to cardiac failure. Although they may be of initial benefit in supporting a reduced stroke volume, they may ultimately prove self-defeating. New drugs for the treatment of severe congestive heart failure include dopamine, which has a selective nonadrenergic dilator effect on the renal vascular bed, and dobutamine, which has potent inotropic effects, lowers the left ventricular filling pressure and does not increase the heart rate or the systemic vascular resistance. By reducing both the resistance to left ventricular ejection and the venous return to the right heart, vasodilators result in improved peripheral perfusion and reduced pulmonary congestion. Optimal therapy for refractory cardiac failure can be rationally determined by characterizing the hemodynamic profile through measurement of the mean arterial pressure, the left ventricular filling pressure, the cardiac output and the systemic vascular resistance. The specific therapy can then be effectively and safely delivered by a careful analysis of the dose-response relation as identified by hemodynamic monitoring.  相似文献   

5.
Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. It was recently reported that inhaled NO causes peripheral vasodilatation after treatment with a NO synthase (NOS) inhibitor. These findings suggested the possibility that inhibition of endogenous NOS uncovered the systemic vasodilating effect of NO or NO adducts absorbed via the lungs during NO inhalation. To learn whether inhaled NO reduces systemic vascular resistance in the absence of endothelial NOS, we studied the systemic vascular effects of NO breathing in wild-type mice treated without and with the NOS inhibitor N(omega)-nitro-l-arginine methyl ester and in NOS3-deficient (NOS3(-/-)) mice. During general anesthesia, the cardiac output, left ventricular function, and systemic vascular resistance were not altered by NO breathing at 80 parts/million in both genotypes. Breathing NO in air did not alter blood pressure and heart rate, as measured by tail-cuff and telemetric methods, in either awake wild-type mice (whether or not they were treated with N(omega)-nitro-l-arginine methyl ester), or in awake NOS3(-/-) mice. Our findings suggest that absorption of NO or adducts during NO breathing is insufficient to cause systemic vasodilation in mice, even when endogenous endothelial NO production is congenitally absent.  相似文献   

6.
Gordon R. Cumming  W. Carr 《CMAJ》1966,95(10):527-531
Propranolol (P) .13 mg./kg. was given to seven patients with mitral valve obstruction the changes in resting and exercise hemodynamics were followed by means of combined right and left heart catheterization. Changes were variable. At rest there was a decrease in heart rate of 10 beats/min. with no consistent change in stroke volume, cardiac output, left ventricular systolic (LVS) or left atrial (LA) pressure after P. Mean left ventricular end-diastolic (LVED) pressure was increased 3 mm., mean pulmonary artery (PA) pressure was increased 4 mm., and mean mitral valve gradient was reduced 3 mm. Hg by P. During exercise, mean LVS pressure was decreased 31 mm., mean LVED pressure increased 3 mm., mean LA pressure decreased 3 mm., and mean mitral valve gradient was reduced 5 mm. Hg after P. Mean exercise PA pressure was unchanged, cardiac output was reduced 0.9 1./min., and mean heart rate was reduced 37 beats/min., while stroke volume increased 3 ml./beat after P. Exercise pulmonary vascular resistance was increased from 6.1 to 8.2 units by P. Despite a slower heart rate, the diastolic filling period was not increased. P has no place in the treatment of the majority of patients with mitral stenosis because it further reduces cardiac performance below normal.  相似文献   

7.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

8.
Recent reports indicate that under certain restricted conditions hyperoxia may decrease tissue O2 consumption. However, this effect has not been established for whole body O2 consumption in the intact healthy conscious state. The goal of the present study was to document the effect of hyperoxia on resting whole body O2 consumption and hemodynamics under these latter more general physiological conditions. The inspired gas was delivered by mask to six fasted resting conscious dogs and alternated hourly between air and O2-enriched air (hyperoxia) for 5 h, while hemodynamics and blood gas data were obtained every 20 min. Compared with air breathing, hyperoxia increased the mean arterial O2 tension from 95 to 475 Torr and decreased heart rate, cardiac output, pulmonary vascular resistance, and right and left ventricular work rates and thus, presumably, myocardial O2 consumption. Hyperoxia also increased systemic vascular resistance and right atrial pressure but did not change stroke volume or systemic arterial pressure. The increase in arterial O2 content during hyperoxia was counterbalanced by the decrease in cardiac output, so that O2 delivery was unchanged by hyperoxia. Surprisingly, hyperoxia decreased the arterial-to-mixed venous difference in O2 content; this decrease together with the decrease in cardiac output produced a decrease in resting whole body O2 consumption from 5.88 +/- 0.68 to 4.80 +/- 0.62 ml O2.min-1.kg-1 (P = 0.0002). It is concluded that under physiological conditions normobaric hyperoxia may decrease metabolic rate in addition to cardiac output, which may have important implications for the metabolic regulation of O2 utilization as well as for the medical and nonmedical uses of O2.  相似文献   

9.
Nine patients with critically reduced cardiac output after acute myocardial infarction underwent a single cross-over comparison of dobutamine and salbutamol to compare the haemodynamic effects of these drugs, which have, respectively, predominantly beta 1-adrenergic and beta 2-adrenergic agonist activity. The responses were used to select the more appropriate treatment for individual patients. Only relatively small responses were obtained: those with poorest baseline measurements tended to show the least effect. When the results from the series were averaged, dobutamine (250-750 microgram/min) caused a small but progressive increase in cardiac index (1.8 to 2.2 1/min/m2) throughout the dose range. Systemic blood pressure was not increased, and calculated systemic vascular resistance fell from 25 to 19 units. Heart rate rose from 107 to 118 beats/min and stroke index from 17 to 19 ml/beat/m2. Pulmonary artery end-diastolic pressure fell from 18 to 15 mm Hg. Salbutamol (10-40 microgram/min) produced a similar progressive increase in cardiac index, from 1.6 to 2.21/min/m2. Systemic blood pressure was not altered, and systemic vascular resistance fell from 25 to 20 units. Heart rate rose from 105 to 119 beats/min and stroke index from 16 to 19 ml/beat/m2. Pulmonary artery end-diastolic pressure did not fall. Dobutamine and salbutamol have closely similar haemodynamic effects when used in cardiogenic shock after acute myocardial infarction. Both drugs increase cardiac index but heart rate also rises, and the increase in stroke index is relatively small. Mean arterial pressure is altered little by either agent, but dobutamine (in contrast with dopamine) tends to reduce pulmonary artery end-diastolic pressure, which may be beneficial.  相似文献   

10.
The extent to which the normal increase in stroke volume during exercise can be augmented by increasing preload by dextran infusion was studied in seven dogs. Each dog ran 3 min on a level treadmill at mild (3-4 mph), moderate (6-8 mph), and severe (9-13 mph) loads during the control study and immediately after 10% dextran 14 ml/kg iv. During severe exercise dextran-augmented stroke volume (+5.4 ml or 19% vs. exercise without dextran, P less than 0.01) and left ventricular end-diastolic diameter and pressure did not change heart rate, aortic pressure, or maximum derivative of left ventricular pressure but decreased systemic vascular resistance by 16%. Similar increases in stroke volume and preload after dextran occurred during mild and moderate exercise when arterial pressure and heart rate were unchanged or increased and systemic vascular resistance was decreased. Thus altering preload above those levels normally encountered during exercise is a potential mechanism to increase stroke volume and cardiac output.  相似文献   

11.
The haemodynamic effects of intravenous morphine sulphate (0.2 mg/kg body weight) were measured in 10 patients with acute myocardial infarction complicated by severe left ventricular failure. Fifteen minutes after morphine injection there was a significant fall in mean heart rate (from 109 to 101 beats/min) and mean systemic arterial pressure (from 80 to 65 mm HG), and a small fall in mean cardiac index (from 2.4 to 2.21/min/m2). Haemodynamic changes at 45 minutes were similar. Neither stroke index nor indirect left ventricular filling pressure (measured as pulmonary artery end-diastolic pressure) were consistently improved 15 or 45 minutes after injection. The useful action of morphine in relieving distressing cardiac dyspnoea is not adequately explained by systemic venous blood pooling. These results suggest that the effects of morphine on the central nervous system are more important.  相似文献   

12.
13.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

14.
Endothelin produces pulmonary vasoconstriction and systemic vasodilation   总被引:4,自引:0,他引:4  
Endothelin is a newly described polypeptide derived from endothelial cells. The effects of porcine endothelin on the pulmonary vascular bed and systemic vascular bed were investigated in the anesthetized, intact-chest cat under conditions of constant pulmonary blood flow and left atrial pressure. Intralobar bolus injections of porcine endothelin (100-1000 ng) produced a mild vasoconstrictor response in the pulmonary vascular bed. The pulmonary vasoconstrictor response to endothelin was not altered when pulmonary vasomotor tone was increased by infusion of U46619. In contrast to this mild pulmonary vasoconstrictor response, endothelin decreased systemic arterial pressure. Moreover, injections of porcine endothelin into the right and left atria produced similar reductions in aortic pressure as well as similar increases in cardiac output and decreases in systemic vascular resistance. The systemic vasodilator response to porcine endothelin was not affected by beta 2-adrenoceptor blockade. The present data suggest that endothelin does not undergo significant first-pass pulmonary metabolism. The pulmonary vasoconstrictor response to bolus injections of porcine endothelin is not altered by changes in pulmonary vasomotor tone. In contrast, endothelin markedly dilated the systemic vascular bed independently of activation of beta 2-adrenoceptors. The present study provides the first report of the activity of endothelin on pulmonary and systemic hemodynamics in vivo. Moreover, the potent vasodilator activity of endothelin in the systemic vascular bed and its weak effect on pulmonary vessels suggest that endothelin may be more important in the regulation of peripheral vasomotor tone than the pulmonary vascular bed.  相似文献   

15.
Hemodynamic effects of epinephrine: concentration-effect study in humans   总被引:1,自引:0,他引:1  
The hemodynamic effects of three different infusion rates of epinephrine (25, 50, or 100 ng X kg-1 X min-1 for 14 min) were examined in 10 normal human subjects. Ejection fraction and changes in cardiac volumes were assessed by radionuclide ventriculography. Plasma epinephrine was increased to levels that spanned the normal physiological range (178 +/- 15, 259 +/- 24, and 484 +/- 69 pg/ml, respectively). Epinephrine infusions resulted in dose-dependent increases in heart rate (8 +/- 3, 12 +/- 2, and 17 +/- 1 beats/min, mean +/- SE) and systolic pressure (8 +/- 1, 18 +/- 2, and 30 +/- 6 mmHg). Although epinephrine infusions had minimal effects on end-diastolic volume, there were significant increases in stroke volume (+26 +/- 2, 31 +/- 4, and 40 +/- 4%), ejection fraction (+0.10 +/- 0.01, 0.14 +/- 0.02 and 0.16 +/- 0.03 ejection fraction units), and cardiac output (+41 +/- 4, 58 +/- 5, and 74 +/- 1%). These increases in left ventricular performance were associated with a decreased systemic vascular resistance (-31 +/- 3, -42 +/- 2, and -48 +/- 8%). Supine bicycle exercise resulted in similar plasma epinephrine levels (417 +/- 109 pg/ml) and similar changes in stroke volume, ejection fraction, and systemic vascular resistance but greater increases in heart rate and systolic blood pressure. Since infusion-associated hemodynamic changes occurred at plasma epinephrine levels commonly achieved during many types of physical and emotional stress, epinephrine release may have an important role in regulating systemic vascular resistance, stroke volume, and ejection fraction responses to stress in man.  相似文献   

16.
We showed previously that the vasopeptidase inhibitor (VPI) omapatrilat improves peri-myocardial infarction (MI) survival, but the mechanisms involved and whether these effects are sustained remained to be determined, and are the subject of this study. Rats (n = 272) received omapatrilat (20 mg x kg-1x day-1) starting 7 days before MI and continued peri- and post-MI, or no treatment (control). One group of rats had continuous ambulatory ECG and blood pressure recordings started 6 h before MI and continued until 24 h after MI, when survival was evaluated, and the rats were killed, and MI size was evaluated. A second group had left ventricular (LV) remodeling evaluated by echocardiography at 30 days and, at 38 days, had cardiac hemodynamics and morphology done and survival evaluated. Survival 24 h after MI (n = 255) improved with omapatrilat (60% vs. 46% for control; P = 0.0378). Over the next 37 days, there was no further improvement with omapatrilat but the early benefit was sustained. Omapatrilat reduced MI size 24 h after MI (36 +/- 2 vs. 42 +/- 2 mm2 for controls; P = 0.034). Omapatrilat reduced ventricular arrhythmia score 1-12 h after MI. Omapatrilat decreased blood pressure, but not during the first 24 h after MI. Omapatrilat reduced LV diastolic and systolic dimensions and LV and right ventricular weights compared with control large MI, indicating a decrease in reactive hypertrophy. Improvement in cardiac remodeling was accompanied by improved cardiac hemodynamics. Thus this study indicates that pre-, peri-, and post-MI treatment with the VPI omapatrilat is beneficial in survival, ventricular arrhythmias, LV remodeling, and cardiac function.  相似文献   

17.
OBJECTIVES: To investigate possible cardiac morphofunctional alterations observed in 26 Turner's syndrome (TS) patients on prolonged high-dose growth hormone (GH) therapy. STUDY DESIGN: We examined 26 TS subjects treated with rhGH (1 U/kg/week) for a mean period of 4.9 years (range 1-7.8) and 37 age-, weight- and height-matched healthy girls. Left ventricular volume, mass, systolic function, cardiac index, systemic vascular resistance and diastolic function were evaluated by two-dimensional and Doppler echocardiography. RESULTS: Heart rate and systolic blood pressure (BP) were higher in TS patients than in controls, while diastolic BP was lower. Left ventricular volumes, ejection fraction, mass index, M/V ratio and cardiac index did not differ significantly; systemic vascular resistance was slightly decreased. Left ventricular fractional shortening and mean velocity of circumferential shortening were slightly increased while end-systolic meridional stress was decreased in TS. Contractile state was normal in TS. Diastolic function assessment showed a shortening of isovolumetric relaxation and diastolic filling times with an increased atrial contribution and a normal pulmonary venous flow. CONCLUSION: Cardiac morphology in TS patients on GH therapy is similar to controls. The observed changes in left ventricular systolic and diastolic function should be interpreted as an adaptation to the higher heart rate and reduced peripheral vascular resistance induced by GH therapy.  相似文献   

18.
Suppressed parasympathetic nervous system (PSNS) function has been found in a variety of cardiovascular diseases, such as hypertension, heart failure, and diabetes. However, whether impaired PSNS function plays a significant role in ventricular dysfunction remains to be investigated. Cardiac regulation by the PSNS is primarily mediated by the M(2) muscarinic acetylcholine receptor (M(2)-AChR). In this study, we tested the hypothesis that lack of M(2)-AChR-mediated PSNS function may adversely impact cardiac ventricular function. Using M(2)-AChR knockout (KO) and wild-type (WT) mice, we found that the basal levels of heart rate and left ventricular function were similar in M(2)-AChR KO and WT mice. A bolus injection of isoproterenol (Iso) induced a greater increase in heart rate in M(2)-AChR KO mice than in WT mice. However, the responses of change in pressure over time (dP/dt) to Iso were similar in the two groups. After chronic infusion with Iso for 1 wk, the baseline values of left ventricular function were increased to similar extents in M(2)-AChR KO and WT mice. However, the M(2)-AChR KO mice exhibited impaired ventricular function, indicated as attenuated dP/dt and increased end-diastolic pressure, during an increase in cardiac afterload induced by a bolus injection of phenylephrine. Furthermore, chronic Iso infusion significantly increased matrix metalloproteinase (MMP) activity in the heart in M(2)-AChR KO mice. In primary culture of mixed neonatal rat cardiac fibroblast and cardiomyocytes, cotreatment with muscarinic agonist bethanechol reversed phenylephrine-induced increase in MMP-9 activation. These data suggest that M(2)-AChR may mediate an inhibitory regulation on MMP function. The overall results from this study suggest that M(2)-AChR-mediated PSNS function may provide cardiac protection. Lack of this protective mechanism will increase the susceptibility of the heart to cardiac stresses.  相似文献   

19.
目的:监测中国南极冰盖考察预选队员心血管系统随海拔增高的变化,探讨筛查低氧易感队员和急性高原病的防治。方法:用无创血流动力学监护仪和十二导联心电图机,在北京(40 m)、拉萨(3 650 m)、羊八井(4 300 m)对第25次和26次南极冰盖考察预选队员心血管功能进行连续动态性监测。结果:随着海拔的增高,心率、收缩压、舒张压、平均动脉压、外周血管阻力、外周血管阻力指数显著升高(P0.05),心输出量、心指数、搏出量、搏出指数、加速度指数、速度指数、左心射血时间显著降低(P0.05),预射血期呈降低趋势(P0.05)。结论:随着海拔的增高,预选队员的外周血管阻力显著升高,左心泵血和收缩功能减弱且与Q-TC间期呈负相关。  相似文献   

20.
We have previously demonstrated that progressive development of absence of meal-induced insulin sensitization (AMIS) leads to postprandial hyperglycemia, compensatory hyperinsulinemia, resultant hyperlipidemia, increased oxidative stress, and obesity, progressing to syndrome X in aging rats. The present study tested the hypothesis that progressive development of AMIS in aging rats further resulted in deterioration in cardiac performance. Anesthetized male Sprague-Dawley rats were tested at 9, 26, and 52 wk to determine their dynamic response to insulin and cardiac function. Dynamic insulin sensitivity was determined before and after atropine to quantitate hepatic insulin sensitizing substance (HISS)-dependent and -independent insulin action. Cardiac performance was evaluated using a Millar pressure-volume conductance catheter system. AMIS developed with age, as demonstrated by significant decrease in HISS-dependent insulin action, and this syndrome was increased by sucrose supplementation and inhibited by the antioxidant treatment. Associated with progressive development of AMIS, aging rats showed impaired cardiac performance, including the reduction in cardiac index, heart rate, dP/dt(max), dP/dt(min), ejection fraction and decreased slope of left ventricular end-systolic pressure-volume relationship, and increased relaxation time constant of left ventricular pressure as well as increased left ventricular end-diastolic pressure. Total peripheral vascular resistance also increased with age. Sucrose supplementation and antioxidant treatment, respectively, potentiated and attenuated cardiac dysfunction associated with age. In addition, poor cardiac performance correlated closely with the development of AMIS. These results indicate that AMIS is the first metabolic defect that leads to homeostatic disturbances and dysfunctions, including cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号