首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The versatility of Ca(2+) as a messenger in multiple signaling events requires that the concentration of calcium ions within the cytoplasm be highly regulated. In particular, the release of calcium from intracellular stores must often be linked to calcium influx across the cell membrane. Capacitative calcium entry, whereby the depletion of intracellular Ca(2+) stores induces the influx of extracellular calcium, is a crucial element of concerted calcium signaling. Investigations into the phenomenon are contributing to a new appreciation for the organized cytoplasmic framework that supports calcium signaling.  相似文献   

2.
We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.  相似文献   

3.
Normal rat kidney (NRK) fibroblasts have electrophysiological properties and intracellular calcium dynamics that are dependent upon their growth stage. In the present study we show that this differential behavior coincides with a differential calcium entry that can be either capacitative or non-capacitative. Confluent cells made quiescent by serum deprivation, which have a stable membrane potential near ? 70 mV and do not show spontaneous intracellular calcium oscillations, primarily exhibit the capacitative mechanism for calcium entry, also called store-operated calcium entry (SOCE). When the quiescent cells are grown to density-arrest in the presence of EGF as the sole polypeptide growth factor, these cells characteristically fire spontaneously repetitive calcium action potentials, which propagate throughout the whole monolayer and are accompanied by intracellular calcium transients. These density-arrested cells appear to exhibit in addition to SOCE also receptor-operated calcium entry (ROCE) as a mechanism for calcium entry. Furthermore we show that, in contrast to earlier studies, the employed SOCs and ROCs are permeable for both calcium and strontium ions. We examined the expression of the canonical transient receptor potential channels (Trpcs) that may be involved in SOCE and ROCE. We show that NRK fibroblasts express the genes encoding Trpc1, Trpc5 and Trpc6, and that the levels of their expression are dependent upon the growth stage of the cells. In addition we examined the growth stage dependent expression of the genes encoding Orai1 and Stim1, two proteins that have recently been shown to be involved in SOCE. Our results suggest that the differential expression of Trpc5, Trpc6, Orai1 and Stim1 in quiescent and density-arrested NRK fibroblasts is responsible for the difference in regulation of calcium entry between these cells. Finally, we show that inhibition or potentiation of SOCE and ROCE by pharmacological agents has profound effects on calcium dynamics in NRK fibroblasts.  相似文献   

4.
This essay examines the historical significance of an APS classic paper that is freely available online: Kwan CY, Takemura H, Obie JF, Thastrup O, and Putney JW Jr. Effects of MeCh, thapsigargin, and La(3+) on plasmalemmal and intracellular Ca(2+) transport in lacrimal acinar cells. Am J Physiol Cell Physiol 258: C1006-C1015, 1990.  相似文献   

5.
Capacitative calcium entry (CCE) has been described in a variety of cell types. To date, little is known about its role in the CNS, and in particular in the cross-talk between glia and neurons. We have first analyzed the properties of CCE of astrocytes in culture, in comparison with that of the rat basophilic leukemia cell line (RBL-2H3), a model where calcium release-activated Ca2+ (CRAC) channels have been unambiguously correlated with CCE. We here show that (i) in astrocytes CCE activated by store depletion and Ca2+ influx induced by glutamate share the same pharmacological profile of CCE in RBL-2H3 cells and (ii) glutamate-induced Ca2+ influx in astrocytes plays a primary role in glutamate-dependent intracellular Ca2+ concentration ([Ca2+]i) oscillations, being these latter reduced in frequency and amplitude by micromolar concentrations of La3+. Finally, we compared the expression of various mammalian transient receptor potential genes (TRP) in astrocytes and RBL-2H3 cells. Despite the similar pharmacological properties of CCE in these cells, the pattern of TRP expression is very different. The involvement of CCE and TRPs in glutamate dependent activation of astrocytes is discussed.  相似文献   

6.
细胞内钙库排空产生一种信号,诱导细胞膜上的钙库操纵的钙通道(SOC)开放,使Ca^2 由细胞外进入细胞内,称为容量性钙内流(CCE),或钙释放激活的钙通道(CRAC),可能由果蝇一过性受体电位(trp)和trp样(trpl)基因编码,钙库排空和通道开放之间的偶联机制不清,目前主要提出三种机制:(1)弥散信使;(2)蛋白质-蛋白质之间的相互作用;(3)囊泡分泌。本文综述了CCE的分子代表 ,可能机制及电生理表型。  相似文献   

7.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

8.
9.
Capacitative regulation of calcium entry is a major mechanism of Ca2+ influx into electrically non-excitable cells, but it also operates in some excitable ones. It participates in the refilling of intracellular calcium stores and in the generation of Ca2+ signals in excited cells. The mechanism which couples depletion of intracellular calcium stores located in the endoplasmic reticulum with opening of store-operated calcium channels in the plasma membrane is not clearly understood. Mitochondria located in close proximity to Ca2+ channels are exposed to high Ca2+ concentration, and therefore, they are able to accumulate this cation effectively. This decreases local Ca2+ concentration and thereby affects calcium-dependent processes, such as depletion and refilling of the intracellular calcium stores and opening of the store-operated channels. Finally, mitochondria modulate the intensity and the duration of calcium signals induced by extracellular stimuli. Ca2+ uptake by mitochondria requires these organelles to be in the energized state. On the other hand, Ca2+ flux into mitochondria stimulates energy metabolism. To sum up, mitochondria couple cellular metabolism with calcium homeostasis and signaling.  相似文献   

10.
In this report we investigated the correlation between cell morphology and regulation of cytosolic calcium homeostasis. Type I astrocytes were differentiated to stellate process-bearing cells by a 100-min exposure to cAMP. Differentiation of cortical astrocytes increased the magnitude and duration of calcium transients elicited by phospholipase C-activating agents as measured by single cell Fura-2-based imaging. Calcium imaging showed differences in the spatial pattern of the response. In both differentiated and the control cells, the response originated in the periphery and gradually extended into the center of the cell. However, the elevation of cytosolic calcium concentration ([Ca(2+)](i)) was particularly evident within the processes and adjacent to the inner cell membrane of the differentiated astrocytes. In addition, differentiation significantly prolonged the duration of the [Ca(2+)](i) elevation. Potentiation of the calcium transients was mimicked by forskolin-induced differentiation and abolished by a specific protein kinase-A blocker. Conversely, the enhancement of the calcium transients was not mimicked by brief exposure to cAMP not causing morphological differentiation, and in PC12 cells that did not undergo morphological changes after 100 min of cAMP treatment. Impairing cAMP-induced cytoskeleton re-organization, by means of cytochalasin D and nocodazole, prevented the potentiation of the calcium transients in cAMP-treated astrocytes. Phospholipase C activity and sensitivity to inositol (1,4,5)-trisphosphate were not involved in the enhancement of the calcium responses. Also, potentiation of the calcium transients was dependent on extracellular calcium. Calcium storage and thapsigargin-depletable intracellular calcium reservoirs were analogously not increased in differentiated astrocytes. Rearrangement of the cell shape also caused a condensation of the endoplasmic reticulum and altered the spatial relationship between the endoplasmic reticulum and the cell membrane. In conclusion, morphological rearrangements of type I astrocytes increase the magnitude and the duration of agonist-induced calcium transients via enhancement of capacitative calcium entry and is associated with a spatial reorganization of the relationship between cell membrane and the endoplasmic reticulum structures.  相似文献   

11.
A preneoplastic variant of Syrian hamster embryo cells, sup(+), exhibits decreased endoplasmic reticulum calcium levels and subsequently undergoes apoptosis in low serum conditions (Preston, G. A., Barrett, J. C., Biermann, J. A., and Murphy, E. (1997) Cancer Res. 57, 537-542). This decrease in endoplasmic reticulum calcium appears to be due, at least in part, to reduced capacitative calcium entry at the plasma membrane. Thus we investigated whether inhibition of capacitative calcium entry per se could reduce endoplasmic reticulum calcium and induce apoptosis of cells. We find that treatment with either SKF96365 (30-100 microM) or cell-impermeant 1,2-bis(o-amino-5-bromophenoxy)ethane-N,N,N', N'-tetraacetic acid (5-10 mM) is able to induce apoptosis of cells in conditions where apoptosis does not normally occur. Because previous work has implicated vesicular trafficking as a mechanism of regulating capacitative calcium entry, we investigated whether disruption of vesicular trafficking could lead to decreased capacitative calcium entry and subsequent apoptosis of cells. Coincident with low serum-induced apoptosis, we observed an accumulation of vesicles within the cell, suggesting deregulated vesicle trafficking. Treatment of cells with bafilomycin (30-100 nM), an inhibitor of the endosomal proton ATPase, produced an accumulation of vesicles, decreased capacitative entry, and induced apoptosis. These data suggest that deregulation of vesicular transport results in reduced capacitative calcium entry which in turn results in apoptosis.  相似文献   

12.
We have evaluated the presence of capacitative Ca(2+) entry (CCE) in guinea pig gallbladder smooth muscle (GBSM), including a possible relation with activation of L-type Ca(2+) channels. Changes in cytosolic Ca(2+) concentration induced by Ca(2+) entry were assessed by digital microfluorometry in isolated, fura 2-loaded GBSM cells. Application of thapsigargin, a specific inhibitor of the Ca(2+) store pump, induced a transient Ca(2+) release followed by sustained entry of extracellular Ca(2+). Depletion of the stores with thapsigargin, cyclopiazonic acid, ryanodine and caffeine, high levels of the Ca(2+)-mobilizing hormone cholecystokinin octapeptide, or simple removal of external Ca(2+) resulted in a sustained increase in Ca(2+) entry on subsequent reapplication of Ca(2+). This entry was attenuated by 2-aminoethoxydiphenylborane, L-type Ca(2+) channel blockade, pinacidil, and Gd(3+). Accumulation of the voltage-sensitive dye 3,3'-dipentylcarbocyanine and direct intracellular recordings showed that depletion of the stores is sufficient for depolarization of the plasma membrane. Contractility studies in intact gallbladder muscle strips showed that CCE induced contractions. The CCE-evoked contraction was sensitive to 2-aminoethoxydiphenylborane, L-type Ca(2+) channel blockers, and Gd(3+). We conclude that, in GBSM, release of Ca(2+) from internal stores activates a CCE pathway and depolarizes plasma membrane, allowing coactivation of voltage-operated L-type Ca(2+) channels. This process may play a role in excitation-contraction coupling in GBSM.  相似文献   

13.
14.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

15.
We investigated whether cyclic stretch affects TRPC4 or TRPC6 expression and calcium mobilization in cultured vascular smooth muscle cells. In aortic and mesenteric smooth muscle cells isolated from male Sprague-Dawley rats, TRPC4 expression was decreased after 5 h stretch and remained suppressed through 24 h stretch. After removal of the stretch stimulus, TRPC4 expression recovered within 2 h. Stretch did not affect TRPC6 expression. Stretch also decreased capacitative calcium entry, while agonist-induced calcium influx was increased. Similar results were obtained in primary aortic smooth muscle cells. TRPC4 mRNA levels were not decreased in response to mechanical strain. TRPC4 downregulation was also achieved by increasing extracellular calcium and was attenuated by gadolinium and MG132, suggesting that TRPC4 protein is regulated by intracellular calcium concentration and/or the ubiquitin-proteasome pathway. These data suggest that stretch-induced downregulation of TRPC4 protein expression and capacitative calcium entry may be a protective mechanism to offset stretch-induced increases in intracellular calcium.  相似文献   

16.
Mutations in presenilin-1 and 2 (PS) lead to increased intracellular calcium stores and an attenuation in the refilling mechanism known as capacitative calcium entry (CCE). Previous studies have shown that the mechanism by which PS modulates intracellular calcium signaling is dependent on gamma-secretase activity. Although the modulation of intracellular calcium signaling can lead to alterations in CCE, it is plausible that PS can also directly affect CCE independent of the effect it exerts on intracellular stores. To investigate this possibility, we studied the effects of the dominant negative variant of PS1 known as DeltaTM1-2, which lacks the first two transmembrane domains of PS1 and in which gamma-secretase activity is abrogated. We demonstrate that, like other dominant negative isoforms of PS1, DeltaTM1-2 expression leads to reduced intracellular calcium. However, unlike other dominant negative isoforms, DeltaTM1-2 leads to a deficit rather than a potentiation of CCE. These data suggest that changes in the structural components of presenilin can modulate CCE independent of its function in gamma-secretase activity and intracellular calcium stores.  相似文献   

17.
We investigated the putative roles of phospholipase C, polyphosphoinositides, and inositol 1,4,5-trisphosphate (IP(3)) in capacitative calcium entry and calcium release-activated calcium current (I(crac)) in lacrimal acinar cells, rat basophilic leukemia cells, and DT40 B-lymphocytes. Inhibition of phospholipase C with blocked calcium entry and I(crac) activation whether in response to a phospholipase C-coupled agonist or to calcium store depletion with thapsigargin. Run-down of cellular polyphosphoinositides by concentrations of wortmannin that block phosphatidylinositol 4-kinase completely blocked calcium entry and I(crac). The membrane-permeant IP(3) receptor inhibitor, 2-aminoethoxydiphenyl borane, blocked both capacitative calcium entry and I(crac). However, it is likely that 2-aminoethoxydiphenyl borane does not inhibit through an action on the IP(3) receptor because the drug was equally effective in wild-type DT40 B-cells and in DT40 B-cells whose genes for all three IP(3) receptors had been disrupted. Intracellular application of another potent IP(3) receptor antagonist, heparin, failed to inhibit activation of I(crac). Finally, the inhibition of I(crac) activation by or wortmannin was not reversed or prevented by direct intracellular application of IP(3). These findings indicate a requirement for phospholipase C and for polyphosphoinositides for activation of capacitative calcium entry. However, the results call into question the previously suggested roles of IP(3) and IP(3) receptor in this mechanism, at least in these particular cell types.  相似文献   

18.
Caffeine increases the amplitude of the Cl- currents evoked by capacitative Ca2+ entry (CCE) on thapsigargin-treated Xenopus oocytes. The caffeine-induced potentiation of the CCE process appears to rest on two distinct and additive components. The first component involves the cAMP second messenger system since it can be mimicked by either IBMX perfusion or cAMP microinjection into the oocyte and inhibited by the PKA inhibitory peptide i-PKA. The second component, although activatory, is dynamically related to the caffeine-evoked inhibition of InsP3-mediated Ca+ release and may arise from an interaction between caffeine and the InsP3 receptor in the context of a conformational coupling between the InsP, receptor and the channels responsible for CCE.  相似文献   

19.
It was found that a collapse of the mitochondrial calcium buffering caused by the protonophoric uncoupler CCCP, antimycin A plus oligomycin, or the inhibitor of the mitochondrial Ca2+/Na+ exchanger led to a strong inhibition of thapsigargin-induced capacitative Ca2+ entry (CCE) into Jurkat cells suspended in a medium at pH 7.2. The effect of these inhibitors was markedly less significant at higher extracellular pH. Moreover, dysfunction of the mitochondrial calcium handling greatly decreased CCE sensitivity to extracellular Ca2+ when the pH of extracellular solution was 7.2 (apparent Kd toward extracellular Ca2+ rose from 2.3 +/- 0.6 mm in control cells to 11.0 +/- 1.7 mM in CCCP-treated cells) as compared with pH 7.8 (apparent Kd toward extracellular Ca2+ increased from 1.3 +/- 0.4 mM in control cells to 2.4 +/- 0.4 mM in uncoupler-treated cells). Changes in intracellular pH triggered by methylamine did not influence Ca2+ influx. This suggests that, in Jurkat cells, store-operated calcium channels sense extracellular pH change as a parameter that modifies their sensitivity to intracellular Ca2+. In contrast, in human osteosarcoma cells, changes in extracellular pH as well as mitochondrial uncoupling did not exert any inhibitory effects on CCE.  相似文献   

20.
Angiotensin converting enzyme (ACE) has been shown to be involved in regulation of apoptosis in nonintestinal tissues. This study examined the role of ACE in the modulation of intestinal adaptation utilizing ACE knockout mice (ACE-/-). A 60% small bowel resection (SBR) was used, since this model results in a significant increase in intestinal epithelial cell (EC) apoptosis as well as proliferation. Baseline villus height, crypt depth, and intestinal EC proliferation were higher, and EC apoptosis rates were lower in ACE-/- compared with ACE+/+ mice. After SBR, EC apoptosis rates remained significantly lower in ACE-/- compared with ACE+/+ mice. Furthermore, villus height and crypt depth after SBR continued to be higher in ACE-/- mice. The finding of a lower bax-to-bcl-2 protein ratio in ACE-/- mice may account for reduced EC apoptotic rates after SBR in ACE-/- compared with ACE+/+ mice. The baseline higher rate of EC proliferation in ACE-/- compared with ACE+/+ mice may be due to an increase in the expression of several EC growth factor receptors. In conclusion, ACE appears to have an important role in the modulation of intestinal EC apoptosis and proliferation and suggests that the presence of ACE in the intestinal epithelium has a critical role in guiding epithelial cell adaptive response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号