首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to purify, characterize, and study the regulation at the chondrocyte level of the guinea pig (gp) homologue of human (R) YKL40, a putative marker of arthritic disorders. Studying YKL40 in guinea pigs is of particular interest, as age-related osteoarthritis develops in this species spontaneously. Both N-terminal sequencing and total amino acid composition of gpYKL40 purified from the secretion medium of cultured articular chondrocytes indicate a high degree of identity with hYKL40. gpYKL40 was found to contain complex N-linked carbohydrate, as demonstrated by N-glycosidase F and endoglycosidase F digestion. Isoelectric focusing demonstrated the presence of a major band at pI 6.7. The secretion of gpYKL40 by confluent articular chondrocytes in the extracellular medium was studied by immunoblotting. gpYKL40 was released by chondrocytes continuously over a 7 day period and did not appear to be degraded by proteinases, as its signal intensity in cell-free medium at 37°C did not decrease with time. Thus, gpYKL40 displays high stability and accumulates in extracellular medium without reaching a steady-state level. Among the main factors known to regulate cartilage metabolism, IL-1β, TNF-α, bFGF, or 1,25(OH)2D3 did not alter the basal level of gpYKL40, and retinoic acid had a slight inhibitory effect; TGF-β and IGF-I and -II dose-dependently and inversely modulated this basal level. TGF-β at 5 ng/ml decreased extracellular gpYKL40 2.9-fold, whereas IGF-I and IGF-II at 50 ng/ml increased extracellular gpYKL40 3.6- and 3.4-fold, respectively. The present biochemical and biological findings give new insights for studying the function of YKL40 in cartilage. J. Cell Biochem. 69:414-424, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Mitochondrial uptake of rhodamine 123 by rabbit articular chondrocytes   总被引:2,自引:0,他引:2  
Rhodamine 123 was used to stain and analyze by flow cytometry the mitochondria of rabbit articular chondrocytes. Stationary primary cultures and exponentially growing subcultures were compared to enzymatically released chondrocytes from cartilage. The increase in mitochondrial fluorescence, when chondrocytes are transferred from cartilage to culture environment, is suggestive of some change in chondrocyte adaptation and/or differentiation in these conditions.  相似文献   

3.
Recent evidence suggests that reactive oxygen intermediates may play a role in the etiology of cartilage matrix degradation in arthritis. We have previously established that normal articular chondrocytes can functionally act as macrophages. These functions include expression of class II MHC Ag, presentation of Ag and induction of mixed and autologous lymphocyte stimulation. Inasmuch as the production of reactive oxygen intermediates is a hallmark of macrophage activity during inflammatory response, we were interested in examining the ability of normal articular chondrocytes to produce reactive oxygen intermediates. Using the trapped indicator 2',7'-dichlorofluorescin diacetate (DCFH-DA), we measured the levels of intracellular hydrogen peroxide within normal rabbit articular chondrocytes. We found that Concanavalin A induces chondrocytes to rapidly oxidize 2',7'-dichlorofluorescin diacetate to a highly fluorescent dichlorofluorescin in a dose- and time-dependent manner. Fluorescent dichlorofluorescin oxidation by chondrocytes was inhibited by the addition of catalase, an enzyme that detoxifies hydrogen peroxide. Exposure of rabbit chondrocytes to either IFN-gamma or TNF primed the chondrocytes to produce significantly greater amounts of hydrogen peroxide with or without further stimulation. Using scopoletin oxidation as a measure of the release of hydrogen peroxide, we confirmed that chondrocytes released this reactive oxygen intermediate after adherence to serum coated culture plates. Rabbit articular chondrocytes produced and released greater amounts of hydrogen peroxide than pulmonary alveolar macrophages, a well characterized macrophage cell type. These observations suggest that chondrocytes are an important source of reactive oxygen intermediates. Furthermore, the production of reactive oxygen intermediates by chondrocytes may be an important mechanism by which chondrocytes induce structural and functional alterations in cartilage matrix observed during arthritis.  相似文献   

4.
Primary cultures of pubertal and prepubertal rabbit articular cartilage cells were performed. Total homogenates or cell extracts were used to determine the specific binding of 17 beta-estradiol. A comparative study was undertaken with tissue minces homogenized without enzymatic treatment. Scatchard analysis of cell or tissue extracts revealed the presence of a high-affinity receptor with Kd values of 0.55 +/- 0.16 nM and 0.12 +/- 0.03 nM in prepubertal and pubertal rabbit chondrocytes respectively. A significant difference in the affinity of estrogen receptor for its ligand as a function of age was observed. In contrast there was no significant difference in the number of binding sites expressed as fmol per mg DNA between the two age groups. The ligand binding specificity was as expected for an estrogen receptor and the sedimentation coefficient was 3.2 S when analyzed by ultracentrifugation on sucrose density gradient in presence of 0.4 M KCl and 8.1 S in low salt conditions. The binding sites, labeled with [125I]estradiol, were specifically immunoprecipitated by a monoclonal antibody to the estrogen receptor (JS34/32).  相似文献   

5.
35S-Labeled proteoglycans produced by chondrocytes from immature and mature rabbits were fractionated on associative CsCl gradients. In all cultures, greater than 85% of the incorporated radioactivity was present in the A1 fraction (rho 1.60) as chondroitin sulfate/keratin sulfate-substituted aggregating proteoglycan monomer; the remainder was present in small proteoglycans in the A2, A3, and A4 fractions of low buoyant densities (rho 1.53, 1.45, 1.37, respectively). Detailed glycosaminoglycan analysis of the A2, A3, and A4 fractions showed dermatan sulfate-rich species were present throughout. However, in both immature and mature cultures, 30-45% of the glycosaminoglycans in the A3/A4 combined fractions were present as keratan sulfate, as shown by insensitivity to digestion with chondroitinase ABC, specific digestion with endo-beta-galactosidase, and reactivity with antibody 5D4. Immature and mature chondrocytes synthesized very similar amounts of the low buoyant density keratan sulfate proteoglycan on a per cell basis. Moreover, 51 and 37% of the total keratan sulfate produced by immature and mature chondrocytes, respectively, were present in the low buoyant density proteoglycan. Pulse-chase experiments indicated that the low buoyant density keratan sulfate was not derived from the large aggregating proteoglycan by proteolysis in the extracellular space. The small keratan sulfate proteoglycans appear to be present as a species distinct from the small dermatan sulfate proteoglycans in these cultures in that they can be separated on Q-Sepharose chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent size (40-60 kDa), composition, and heterogeneity of the keratan sulfate proteoglycans suggest that they may be related to the small keratan sulfate proteoglycans of cornea.  相似文献   

6.
7.
Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.  相似文献   

8.
The understanding of cartilage disorders relies on the possibility of studying mechanisms which monitor the regulation of matrix protein genes through introducing efficiently and in a reproducible manner these genes, or their regulatory regions, into cells. To this end, we attempted to improve the transfection efficiency of rabbit articular chondrocytes by the calcium phosphate procedure. Transfection efficiencies were assessed by measuring the expression of the Lac Z reporter gene encoding -galactosidase using anin situ staining (X-gal staining) and an enzymatic assay (-galactosidase assay).Results revealed that addition of 4 U ml–1 of hyaluronidase before and during transfection increases by 2 to 4-fold the transfection efficiency of rabbit articular chondrocytes. Furthermore, we demonstrated that the use of a giant calcium phosphate DNA coprecipitate gives a higher transfection efficiency and much more reproducible results than those obtained with classical small volumes of precipitates.Abbreviations CPRG Chlorophenol red--D-galactopyranoside - EDTA Ethylenediaminetetraacetic acid - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - HBS Hepes buffered saline - RAC Rabbit articular chondrocytes - X-gal 5-bromo-4-chloro-3-indolyl--D-galactopyranoside  相似文献   

9.
Chondrocytes isolated from elastic ear cartilage of young rabbits were grown in monolayer cultures. Secretion into the medium of glycosaminoglycans labeled with 35SO4 was monitored by continuous perifusion. This experimental system was used to study the influence of colchicine, lumicolchicine, and cytochalasin B on the response to a 2-h β-d-xyloside pulse. In untreated cultures the stimulative effect of the xyloside was seen within 6 min and a new secretory steady state was reached in less than 20 min. Rabbit ear chondrocytes thus respond considerably faster to β-d-xyloside than chick sternum chondrocytes. After xyloside withdrawal glycosaminoglycan production decreased to baseline amounts in about 30 min. Colchicine caused a delayed and protracted response to xyloside. These effects were not mimicked by lumicolchicine. Hence, cytoplasmic microtubules appear to be involved in the secretion of glycosaminoglycans. On the other hand, colchicine had no effect on the size distribution of the labeled macromolecules. These findings suggest that colchicine exerts its action at a stage subsequent to initiation of the synthesis of glycosaminoglycans. Cytochalasin B did not affect the rate of response to xylside exposure or withdrawal.  相似文献   

10.
Forskolin, a plant cardiotonic diterpene, stimulated proteoglycan biosynthesis by chondrocytes in monolayer culture. The quantitative increase in proteoglycans was dependent on the concentration of forskolin, but was relatively independent of the presence of serum. At forskolin concentrations that stimulated proteoglycan synthesis, a significant stimulation of adenylate cyclase and cAMP was also measured. The quantitative increase in proteoglycans was characterized, qualitatively, by an increased deposition of newly synthesized proteoglycan in the cell-associated fraction. An analysis of the most dense proteoglycans (fraction dA1) in the cell-associated fraction showed that more of the proteoglycans eluted in the void volume of a Sepharose CL-2B column, indicating that an increased amount of proteoglycan aggregate was synthesized in forskolin-treated cultures. The proteoglycan monomer dA1D1 secreted into the culture medium of forskolin-stimulated cultures overlapped in hydrodynamic size with that of control cultures, although cultures stimulated with forskolin and phosphodiesterase inhibitors produced even larger proteoglycans. The hydrodynamic size of 35SO4 and 3H-glucosamine-labelled glycosaminoglycans isolated from the dA1D1 fraction of the culture medium was greater in forskolin-treated chondrocytes, especially from those in which phosphodiesterase inhibitors had been added. These results indicated that forskolin, a direct activator of chondrocyte adenylate cyclase mimicked the effects of cAMP analogues on chondrocyte proteoglycan synthesis previously reported. These results implicate activation of adenylate cyclase as a regulatory event in the biosynthesis of cartilage proteoglycans, and more specifically in the production of hydrodynamically larger glycosaminoglycans.  相似文献   

11.
Chondrocytes isolated from rabbit articular cartilage undergo a progressive ‘derepression’ in culture and synthesize Type I, Type III and an unidentified collagen designated Peak ‘X’. In contrast, cartilage slices synthesize predominantly Type II collagen with increasing amounts of Peak ‘X’ during prolonged culture.  相似文献   

12.
Cell lines were established from rabbit articular chondrocytes following transfection with a plasmid encoding SV40 early function genes. This resulted in cell immortalization (130 passages have been completed for the oldest cell line) with acquisition of characteristics of partial transformation such as reduced serum requirements for normal and clonal growth. The immortalized chondrocytes, called SVRAC, did not form multilayer foci when maintained in postconfluent culture. Their ability to form colonies in soft agar was not increased in comparison with normal chondrocytes, but they were weakly tumorigenic in nude mice. SVRAC lost the ability to synthesize type II collagen and Alcian blue-stainable matrix, which are markers of the differentiated chondrocyte phenotype, and synthesized predominantly type I collagen. Studies of collagen gene expression showed that pro alpha 1 (II) mRNA was undetectable, whereas pro alpha 1 (I) collagen mRNA was expressed even in late passage cultures. Unlike normal dedifferentiated chondrocytes, SVRAC were unable to re-express the differentiated phenotype in response to tridimensional culture or microfilament depolymerization. Cell lines obtained from chondrocytes transfected either in primary culture or just after release of cells from cartilage displayed the same behaviour. Thus SV40 early genes were able to immortalize rabbit articular chondrocytes, but the resulting cell lines displayed an apparently irreversibly dedifferentiated phenotype. These cell lines can be used as models to identify regulatory pathways that are required for the maintenance or reexpression of differentiated function in chondrocytes.  相似文献   

13.
目的:研究携载质粒的不同分子量的壳聚糖纳米微球的包裹率和保护DNA的能力,镜下观察其大小和形态,观察其对原代兔关节软骨细胞的转染效率。方法:利用酶消化法消化3周龄新西兰大白兔的关节软骨,贴壁培养原代兔关节软骨细胞。购买相对分子量在5K和800K之间的八种壳聚糖,利用表达增强型绿色荧光蛋白的质粒(pEGFP)作报告基因,通过复合凝聚法制备壳聚糖-质粒纳米微球。琼脂糖凝胶电泳、紫外分光光度计分析不同N/P比值对不同分子量壳聚糖和质粒的结合能力及包封率的影响;纳米粒度仪、透射电子显微镜和环境扫描电子显微镜考察纳米微球的粒径分布和形态;荧光显微镜观察壳聚糖纳米微球介导pEGFP在体外培养的兔关节软骨细胞中的表达情况;流失细胞仪计算具体转染效率。结果:①N/P值为4及4以上时,各分子量的壳聚糖可完全包裹质粒成球;N/P值为2时,分子量为5K、50K、85K仅部分包裹质粒,其余可完全包裹;N/P值为1时,各壳聚糖均与质粒部分包裹;N/P值为0.25时,各壳聚糖均与质粒完全分离。②纳米粒度仪分析得出:N/P值为4时,各分子量的壳聚糖纳米微球的平均粒径均在1微米以下,③透射电子显微镜和扫描电子显微镜均可观察到球形或不规则形的大小不同的微球。荧光显微镜可大致观察到绿色荧光蛋白在软骨细胞内表达的表达情况。④流式细胞仪得出具体转染效率,分子量为170K、250K和800K的壳聚糖纳米微球的转染效率均高于5K、50K和85K的壳聚糖纳米微球,其中800K的壳聚糖纳米微球与脂质体相当(差异有统计学意义,P〈0.05)。结论:与脂质体相比,N/P比值为4时,相对分子量为800k的壳聚糖纳米微球可高效转染原代培养的兔软骨细胞,可以作为今后进一步体外、体内实验的首选转染载体。  相似文献   

14.
目的:研究携载质粒的不同分子量的壳聚糖纳米微球的包裹率和保护DNA的能力,镜下观察其大小和形态,观察其对原代兔关节软骨细胞的转染效率。方法:利用酶消化法消化3周龄新西兰大白兔的关节软骨,贴壁培养原代兔关节软骨细胞。购买相对分子量在5K和800K之间的八种壳聚糖,利用表达增强型绿色荧光蛋白的质粒(pEGFP)作报告基因,通过复合凝聚法制备壳聚糖-质粒纳米微球。琼脂糖凝胶电泳、紫外分光光度计分析不同N/P比值对不同分子量壳聚糖和质粒的结合能力及包封率的影响;纳米粒度仪、透射电子显微镜和环境扫描电子显微镜考察纳米微球的粒径分布和形态;荧光显微镜观察壳聚糖纳米微球介导pEGFP在体外培养的兔关节软骨细胞中的表达情况;流失细胞仪计算具体转染效率。结果:①N/P值为4及4以上时,各分子量的壳聚糖可完全包裹质粒成球;N/P值为2时,分子量为5K、50K、85K仅部分包裹质粒,其余可完全包裹;N/P值为1时,各壳聚糖均与质粒部分包裹;N/P值为0.25时,各壳聚糖均与质粒完全分离。②纳米粒度仪分析得出:N/P值为4时,各分子量的壳聚糖纳米微球的平均粒径均在1微米以下,③透射电子显微镜和扫描电子显微镜均可观察到球形或不规则形的大小不同的微球。荧光显微镜可大致观察到绿色荧光蛋白在软骨细胞内表达的表达情况。④流式细胞仪得出具体转染效率,分子量为170K、250K和800K的壳聚糖纳米微球的转染效率均高于5K、50K和85K的壳聚糖纳米微球,其中800K的壳聚糖纳米微球与脂质体相当(差异有统计学意义,P<0.05)。结论:与脂质体相比,N/P比值为4时,相对分子量为800k的壳聚糖纳米微球可高效转染原代培养的兔软骨细胞,可以作为今后进一步体外、体内实验的首选转染载体。  相似文献   

15.
Addition of ascorbic acid (25, 50 100 micrograms/ml) to cultures of rabbit articular chondrocytes did not change the total amount of proteoglycans produced. However, it induced an increased retention of these macromolecules in the pericellular fraction. The size of the proteoglycan subunits and the length of glycosaminoglycan chains, released in the medium, were not modified on exposure to ascorbic acid (25 micrograms/ml). On the other hand, the rate of non-sulfated chondroitin was increased 2.5-fold, whereas chondroitin-4-sulfate was depressed 1.5-fold.  相似文献   

16.
Primary cultures of rabbit articular chondrocytes have been subcultured within three-dimensional (3D) collagen gels. Under these conditions, the cells remained viable and divided, but with a lower proliferation rate than that observed in control monolayer cultures. Flow cytometric analysis of progression of the cells into the cell cycle has confirmed and extended these findings. Also the cellular volume was decreased in 3D-culture, being in the same range as thein vivo size of cartilage cells. Specific staining for proteoglycans and type II collagen immunolocalization on sections of gels showed the expression of differentiated phenotypes and revealed the accumulation of these matrix components in the immediate surroundings of the cells. The use of Ultroser G (a serum substitute) improved the conditions for 3D- culture of rabbit articular chondrocytes.  相似文献   

17.
Osteoarthritis is characterized by a loss of articular cartilage due at least in part to the action of degradative enzymes secreted by chondrocytes. We have investigated the effect of type II collagen from cartilage and interleukin 1 on collagenase production in cultures of rabbit articular chondrocytes. Interleukin 1 alone stimulated the chondrocytes to secrete collagenase but this response was increased as much as fivefold by the addition of rabbit type II collagen. Bovine type II and chick type I collagens were also stimulatory. The native form of the collagens was not required since denatured collagens and purified chick type II alpha chains were effective. The observed effects of collagens and interleukin 1 may contribute to the progressive nature of osteoarthritis.  相似文献   

18.
Studies to evaluate the effects of recombinant interleukin-1 beta (IL-1) on the expression of matrix proteins by rabbit articular chondrocytes were conducted. Chondrocytes expressed high levels of message for thrombospondin (Tsp) and fibronectin (Fn). RNA slot-blot analysis demonstrated that treatment of the cultures with IL-1 (100 ng/ml) for 24 h caused a 70% suppression of their steady-state Tsp mRNA levels whereas those of Fn were not affected. Steady-state mRNA levels for the intracellular protein, actin, were not modulated by treatment with IL-1. The suppression of Tsp mRNA levels by IL-1 (100 ng/ml) was maximal by 4 h and was concentration dependent; half-maximal suppression was estimated to require 0.12 ng/ml IL-1. Cycloheximide treatment enhanced Tsp mRNA levels, but did not modulate IL-1 suppression of Tsp mRNA. Using pulse-labeling and immunoprecipitation techniques, we found that IL-1 suppression of Tsp mRNA levels was reflected in a coordinate inhibition of Tsp protein synthesis. Chondrocyte synthesis of Fn was not affected by IL-1. These data suggest that IL-1 specifically regulates chondrocyte expression of Tsp at least in part by decreasing the amount of Tsp mRNA available for translation.  相似文献   

19.
H J Liang  C L Tsai  P Q Chen  F J Lu 《Life sciences》1999,65(11):1163-1173
Humic substance has been proposed as one of the causative factors of Kashin-Beck disease (KBD), an endemic osteoarthritic disorder with necrosis of chondrocytes widely prevalent in some regions of China. In order to exclude the complications of natural humic substance, here we prepared phenolic polymers of synthetic humic acid (SHA) by oxidation of phenolic monomer, the protocatechuic acid (PCA). The biological effects of SHA and PCA on primary culture of rabbit articular chondrocytes were investigated. We found that not only SHA but also PCA caused chondrocyte injury, as evidenced by the loss of cell viability measured with methylthiazol tetrazolium (MTT) assay and the increased release of intracellular lactate dehydrogenase (LDH). Both SHA and PCA could result in lipid peroxidation and glutathione (GSH) depletion in chondrocytes, indicating that oxidative stress may be involved in chondrocyte injury. Furthermore, a marked increase in intracellular calcium level ([Ca2+]i) occurred after chondrocytes treated with SHA or PCA. These results suggest that chondrocyte injury elicited by SHA or PCA may be mediated through the occurrence of oxidative stress and the disruption of intracellular Ca2+ homeostasis. Data also suggest that the monomeric phenolic acid may be considered one of the causative factors of KBD in addition to humic substance.  相似文献   

20.
The complexity and the variations in the efficiency of different batches of serum stimulated the preparation of a serum-free medium which could promote not only growth, but also the differentiation properties of rabbit articular chondrocytes in culture. The serum-free medium (SFM) developed in this study contained insulin, transferrin, Na-selenite, human fibronectin bovine serum albumin (BSA), brain growth factor (BGF) or fibroblast growth factor (FGF), hydrocortisone and multiplication stimulating activity (MSA). Primary or secondary cultures of chondrocytes in such a medium attained a proliferation rate equal to 70-80% of that obtained with chondrocytes grown in a serum control medium. The deletion of various factors from SFM indicates that BGF or FGF are the most stimulating of growth factors. Insulin was beneficial when used individually; when combined with BGF or FGF, they had a synergistic effect on cell proliferation. MSA seemed not to play any role in chondrocyte growth in culture. The SFM medium did not modify either the morphology or the progression of cells into the cell cycle. It moreover allowed the maintenance of the specific function of chondrocytes to synthesize type II collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号