共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation,expression, and evolution of the gene encoding mitochondrial elongation factor Tu in Arabidopsis thaliana 总被引:1,自引:0,他引:1
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers. 相似文献
2.
3.
Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana 总被引:1,自引:0,他引:1
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26–52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future. 相似文献
4.
Chen Ching-Nen Chu Chiung-Chih Zentella Rodolfo Pan Shu-Mei David Ho Tuan-Hua 《Plant molecular biology》2002,49(6):631-642
HVA22 is an ABA- and stress-inducible gene first isolated from barley (Hordeum vulgare L.). Homologues of HVA22 have been found in plants, animals, fungi and protozoa, but not in prokaryotes, suggesting that HVA22 plays a unique role in eukaryotes. Five HVA22 homologues, designated AtHVA22a, b, c, d and e, have been identified in Arabidopsis. These five AtHVA22 homologues can be separated into two subfamilies, with AtHVA22a, b and c grouped in one subfamily and AtHVA22d and e in the other. Phylogenetic analyses show that AtHVA22d and e are closer to barley HVA22 than to AtHVA22a, bandc, suggesting that the two subfamilies had diverged before the divergence of monocots and dicots. The distribution and size of exons of AtHVA22 homologues and barley HVA22 are similar, suggesting that these genes are descendents of a common ancestor. AtHVA22 homologues are differentially regulated by ABA, cold, dehydration and salt stresses. These four treatments enhance AtHVA22a, d and e expression, but have little or even suppressive effect on AtHVA22c expression. ABA and salt stress induce AtHVA22b expression, but cold stress suppresses ABA induction of this gene. Expression of AtHVA22d is the most tightly regulated by these four treatments among the five homologues. In general, AtHVA22 homologues are expressed at a higher level in flower buds and inflorescence stems than in rosette and cauline leaves. The expression level of these homologues in immature siliques is the lowest among all tissues analyzed. It is suggested that some of these AtHVA22 family members may play a role in stress tolerance, and others are involved in plant reproductive development. 相似文献
5.
6.
Wild-type and the handshake (has) mutants in Arabidopsis thaliana were analyzed. Compared to the wild-type, has mutants display a number of morphological alterations, which can largely be traced back to altered meristem function. Analyses
of apical meristem of mutant plants showed that mutation affected meristem structure and patterns of STM expression. 相似文献
7.
The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family 总被引:15,自引:0,他引:15
A full-length cDNA clone (MB3) and three partial clones (MA1, MB1 and MB2) which encode myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) were isolated from a Sinapis alba (white mustard) cDNA library. Nucleotide sequence analysis of these clones revealed that they are encoded by a gene family. Southern blot analysis with gene-specific probes showed that the gene family consists of a least two subfamilies (MA and MB) each with several members both in S. alba and in Brassica napus (oilseed rape). In Arabidopsis thaliana (wall cress) only three myrosinase genes seem to be present. Northern blot analysis indicated that all the myrosinase mRNA species have the same size, approximately 1.95 kb. 相似文献
8.
9.
The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. 总被引:15,自引:0,他引:15
Summary Glutamine synthetase (GS) plays an important role in the assimilation of nitrogen by higher plants. We present here a molecular analysis of the GS polypeptides, mRNAs, and genes of Arabidopsis thaliana. Western blot analysis of leaf and root protein extracts revealed at least two distinct GS polypeptides; 43 kDa and 39 kDa GS polypeptides were present in leaves, while only a 39 kDa GS was detected in roots. The 43 kDa GS polypeptide is light-inducible. In etiolated seedlings only the 39 kDa GS was detected. However, upon greening the 43 kDa GS increased to levels comparable to those observed in light-grown plants. Four distinct GS cDNA clones, Atgsl1, Atgsrl, Atgsr2 and Atk6 were isolated and characterized. Their complete nucleotide and deduced amino acid sequences are presented. The coding sequences of the four clones are 70–88% similar while their 5 and 3 untranslated regions exhibit less than 50% similarity. Northern blots of leaf, root and germinated seed RNA revealed that the four cDNAs hybridize to mRNAs which are differentially expressed in the organs of Arabidopsis thaliana. Atgsl1 is leaf-specific and hybridizes to a 1.6 kb mRNA. Both Atgsr1 and Atgskb6 hybridize to 1.4 kb mRNAs which are expressed in both roots and germinated seeds. Atgsr2 hybridizes to a 1.4 kb mRNA, which is primarily expressed in roots with low levels of expression in seeds and leaves. Atgsl1, which represents the leaf-specific mRNA, is induced by light. Atgsl1 mRNA levels increase during the greening of etiolated seedlings while Atgsr1 levels remain constant. Southern blot analysis indicated that the Arabidopsis genome contains at least four and possibly five distinct GS genes. 相似文献
10.
Ole Petter Thangstad Per Winge Harald Husebye Atle Bones 《Plant molecular biology》1993,23(3):511-524
The glucosinolate hydrolyzing enzymes myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) are encoded by a multigene family consisting of two subgroups. The first two nuclear genes representing each of these two subgroups of the new gene family, Myr1.Bn1 and Myr2.Bn1, from Brassica napus have been cloned and sequenced. Based on conserved regions in cDNA of three species, PCR (polymerase chain reaction) primers were made, and used to amplify and characterize the structure of the myrosinase genes in seven species of Brassiceae. Southern hybridization analysis of PCR products and genomic DNA indicates that myrosinase is encoded by at least 14 genes in B. napus, with similar numbers in the other species of Brassicaceae investigated. The Myr1 gene cloned from B. napus has a 19 amino acid signal peptide and consists of 11 exons of sizes ranging from 54 to 256 bp and 10 introns of sizes from 75 to 229 bp. The Myr2 gene has a 20 amino acid signal peptide and consists of 12 exons ranging in size from 35 to 262 bp and 11 introns of sizes from 81 to 131 bp. The exons from the two genes have 83% homology at the amino acid level. The intron-exon splice sites are of GT..AG consensus type. The signal peptides and presence of sites for N-linked glycosylation, suggest transport and glycosylation through the ER-Golgi complex. The differences between the two genes are discussed on the basis of their predicted expression at different developmental stages in the plant. Both genes show homology to a conserved motif representing the glycosyl hydrolase family of enzymes. 相似文献
11.
Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species 总被引:4,自引:0,他引:4
We have analysed a family of highly repetitive DNA from Arabidopsis arenosa (L.) Lawalrée [syn. Cardaminopsis arenosa (L.) Hayck] composed of AT-rich tandem repeats of 166–179 bp in head to tail organization. Sequence comparison between several repeat units revealed a high level of divergence of 4.5% to 25%. The sequence family shows more than 58% homology to satellite sequences described in Arabidopsis thallana (L.) Heynh. but no homology to other satellite repeats in the Cruciferae. Within the genus Arabidopsis the satellite sequence was found to be present in A. thaliana and Arabidopsis suecica (Fries) Norrlin, but not in Arabidopsis griffithiana (Boiss.) N. Busch and Arabidopsis pumila (Stephan) N. Busch. In situ hybridization to metaphase chromosomes of A. arenosa (2n=4x=32) showed the sequence to be localized at the centromeres of all 32 chromosomes with substantial hybridization along the chromosome arms. Using Southern hybridization and in situ hybridization, we give evidence that A. suecica is a hybrid of A. thaliana and A. arenosa. A considerable reorganization of the A. thaliana satellite sequence pAL1 occurred in the hybrid genome while no molecular change of the A. arenosa repeat was observed in the hybrid. Analysis of related repeats enabled differentiation between closely related genomes and are useful for the investigation of hybrid genomes. 相似文献
12.
13.
Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana 总被引:22,自引:0,他引:22
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms. 相似文献
14.
Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana 总被引:2,自引:0,他引:2
Bies-Ethève N Gaubier-Comella P Debures A Lasserre E Jobet E Raynal M Cooke R Delseny M 《Plant molecular biology》2008,67(1-2):107-124
We analyzed the Arabidopsis thaliana genome sequence to detect Late Embryogenesis Abundant (LEA) protein genes, using as reference sequences proteins related
to LEAs previously described in cotton or which present similar characteristics. We selected 50 genes representing nine groups.
Most of the encoded predicted proteins are small and contain repeated domains that are often specific to a unique LEA group.
Comparison of these domains indicates that proteins with classical group 5 motifs are related to group 3 proteins and also
gives information on the possible history of these repetitions. Chromosomal gene locations reveal that several LEA genes result from whole genome duplications (WGD) and that 14 are organized in direct tandem repeats. Expression of 45 of
these genes was tested in different plant organs, as well as in response to ABA and in mutants (such as abi3, abi5, lec2 and fus3) altered in their response to ABA or in seed maturation. The results demonstrate that several so-called LEA genes are expressed in vegetative tissues in the absence of any abiotic stress, that LEA genes from the same group do not present identical expression profile and, finally, that regulation of LEA genes with apparently similar expression patterns does not systematically involve the same regulatory pathway. 相似文献
15.
Felicity Z. Watts Neil Butt Philip Layfield Jesse Machuka Julian F. Burke Anthony L. Moore 《Plant molecular biology》1994,26(1):445-451
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants displey GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination. 相似文献
16.
D. W. Meinke 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,63(4):381-386
Summary Normal and aborted seeds from two recessive embryo-lethal mutants (79A and 124D) of Arabidopsis thaliana were shown to be distributed nonrandomly along the length of heterozygous siliques. Significantly more than half of the aborted seeds in these two mutants were located in the top half of the silique, in the region closest to the stigma surface. Segregation ratios (percent aborted seeds) were unusually low at the base of the silique, and slightly higher than expected at the tip. In contrast, aborted seeds from four other embryo-lethal mutants (87A, 123B, 50B, and 71E) were distributed randomly along the length of the silique. These results suggest that the mutant genes in 79A and 124D are expressed during both the gametophytic (n) and sporophytic (2n) phases of development. These two mutants provide further evidence for the hypothesis that many genes expressed prior to fertilization also perform a critical function during growth and development of the sporophyte. Embryo-lethal mutants of Arabidopsis may therefore be useful in future studies of gametophytic gene expression and the regulation of pollen-tube growth in higher plants. 相似文献
17.
The age of the Arabidopsis thaliana genome duplication 总被引:3,自引:0,他引:3
We estimate the timing of the Arabidopsis thaliana whole-genome duplication by means of phylogenetic and statistical analysis, and propose two possible scenarios for the duplication. The first one, based on the assumption that the duplicated segments diverged from an autotetraploid form, places the duplication at about 38 million years ago, after the Arabidopsislineage diverged from that of soybean (Glycine max) and before it diverged from its sister genus, Brassica. The second scenario assumes that the ancestor was allotetraploid, and suggests that the duplication is younger than 38 million years and may have contributed to the Arabidopsis-Brassica divergence. In each case, our estimate places the age of the genome duplication as significantly younger than previously reported. 相似文献
18.
A new homeobox-leucine zipper gene from Arabidopsis thaliana 总被引:3,自引:0,他引:3
Jim Mattsson Eva Söderman Marie Svenson Chumpol Borkird Peter Engström 《Plant molecular biology》1992,18(5):1019-1022
We have isolated a homeobox-containing gene from Arabidopsis thaliana using a degenerate oligonucleotide probe corresponding to the most conserved region of the homeodomain. This strategy has been used previously to isolate homeobox-containing genes from Caenorhabditis, and recently from A. thaliana. The Arabidopsis genes have an unusual structure in that they have a leucine zipper motif adjacent to the carboxy terminal region of the homeo domain, a feature not found in homeobox-containing genes isolated from animals. We report the isolation and primary structure of a new member of this Arabidopsis homeobox-leucine zipper gene family. This new member has the homeodomain and leucine-zipper motif similar to the two genes previously identified, but differs from these genes in the part corresponding to the carboxy terminus of the polypeptide, as well as in size and isoelectric point of the protein. 相似文献
19.