首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complete genome sequences for many mitochondria, as well as for some bacteria, together with the nuclear genome sequence of yeast have provided a coherent view of the origin of mitochondria. In particular, conventional phylogenetic reconstructions with genes coding for proteins active in energy metabolism and translation have confirmed the simplest version of the endosymbiosis hypothesis. In contrast, the hydrogen and the syntrophy hypotheses for the origin of mitochondria do not receive support from the available data. It remains to be seen how the evolution of hydrogenosomes is related to that of mitochondria.  相似文献   

2.
It is becoming increasingly evident that all eukaryotes characterized to date bear some mitochondrial trait, whether it be a 'real' mitochondrion, a hydrogenosome, a mitosome or a few genes left behind from secondary losses of organelles. The implication is that the evolutionary history of the mitochondrion may reveal the history of the eukaryotic cell itself.  相似文献   

3.
Mitochondria typically respire oxygen and possess a small DNA genome. But among various groups of oxygen-shunning eukaryotes, typical mitochondria are often lacking, organelles called hydrogenosomes being found instead. Like mitochondria, hydrogenosomes are surrounded by a double-membrane, produce ATP and sometimes even have cristae. In contrast to mitochondria, hydrogenosomes produce molecular hydrogen through fermentations, lack cytochromes and usually lack DNA. Hydrogenosomes do not fit into the conceptual mold cast by the classical endosymbiont hypothesis about the nature of mitochondria. Accordingly, ideas about their evolutionary origins have focussed on the differences between the two organelles instead of their commonalities. Are hydrogenosomes fundamentally different from mitochondria, the result of a different endosymbiosis? Or are our concepts about the mitochondrial archetype simply too narrow? A new report has uncovered DNA in the hydrogenosomes of anaerobic ciliates. The sequences show that these hydrogenosomes are, without a doubt, mitochondria in the evolutionary sense, even though they differ from typical mitochondria in various biochemical properties. The new findings are a benchmark for our understanding of hydrogenosome origins.  相似文献   

4.
Blastocystis is a unicellular stramenopile of controversial pathogenicity in humans. Although it is a strict anaerobe, Blastocystis has mitochondrion-like organelles with cristae, a transmembrane potential and DNA. An apparent lack of several typical mitochondrial pathways has led some to suggest that these organelles might be hydrogenosomes, anaerobic organelles related to mitochondria. We generated 12,767 expressed sequence tags (ESTs) from Blastocystis and identified 115 clusters that encode putative mitochondrial and hydrogenosomal proteins. Among these is the canonical hydrogenosomal protein iron-only [FeFe] hydrogenase that we show localizes to the organelles. The organelles also have mitochondrial characteristics, including pathways for amino acid metabolism, iron-sulfur cluster biogenesis, and an incomplete tricarboxylic acid cycle as well as a mitochondrial genome. Although complexes I and II of the electron transport chain (ETC) are present, we found no evidence for complexes III and IV or F1Fo ATPases. The Blastocystis organelles have metabolic properties of aerobic and anaerobic mitochondria and of hydrogenosomes. They are convergently similar to organelles recently described in the unrelated ciliate Nyctotherus ovalis. These findings blur the boundaries between mitochondria, hydrogenosomes, and mitosomes, as currently defined, underscoring the disparate selective forces that shape these organelles in eukaryotes.  相似文献   

5.
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.  相似文献   

6.
A number of microaerophilic eukaryotes lack mitochondria but possess another organelle involved in energy metabolism, the hydrogenosome. Limited phylogenetic analyses of nuclear genes support a common origin for these two organelles. We have identified a protein of the mitochondrial carrier family in the hydrogenosome of Trichomonas vaginalis and have shown that this protein, Hmp31, is phylogenetically related to the mitochondrial ADP-ATP carrier (AAC). We demonstrate that the hydrogenosomal AAC can be targeted to the inner membrane of mitochondria isolated from Saccharomyces cerevisiae through the Tim9-Tim10 import pathway used for the assembly of mitochondrial carrier proteins. Conversely, yeast mitochondrial AAC can be targeted into the membranes of hydrogenosomes. The hydrogenosomal AAC contains a cleavable, N-terminal presequence; however, this sequence is not necessary for targeting the protein to the organelle. These data indicate that the membrane-targeting signal(s) for hydrogenosomal AAC is internal, similar to that found for mitochondrial carrier proteins. Our findings indicate that the membrane carriers and membrane protein-targeting machinery of hydrogenosomes and mitochondria have a common evolutionary origin. Together, they provide strong evidence that a single endosymbiont evolved into a progenitor organelle in early eukaryotic cells that ultimately give rise to these two distinct organelles and support the hydrogen hypothesis for the origin of the eukaryotic cell.  相似文献   

7.
The sequence of an α-proteobacterial genome, that of Rickettsia prowazekii,(1) is a substantial advance in microbial and evolutionary biology. The genome of this obligately aerobic intracellular parasite is small and is apparently still undergoing reduction, reflecting gene losses attributable to its intracellular parasitic lifestyle. Evolutionary analyses of proteins encoded in the genome contain the strongest phylogenetic evidence to date for the view that mitochondria descend from α-proteobacteria. Although both Rickettsia and mitochondrial genomes are highly reduced, it appears that genome reduction in these lineages has occurred independently. Rickettsia's genome encodes an ATP-generating machinery that is strikingly similar to that of aerobic mitochondria. But it does not encode homologues for the ATP-producing pathways of anaerobic mitochondria or hydrogenosomes, leaving an important issue regarding the origin and nature of the ancestral mitochondrial symbiont unresolved. BioEssays 21:377–381, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

8.
As is the case for the assembly of protein components of the membranes in animal mitochondria, the bilayer phospholipids arise from a complicated interplay of intra- and extra-mitochondrial reactions. Our early studies indicated that the bulk of mitochondrial phospholipids (typified by phosphatidylcholine) had their origin in the endoplasmic reticulum and were transported to the mitochondria as complexes with phospholipid-exchange proteins. The polyglycerophosphatides (typified by diphosphatidylglycerol) were apparently synthesized in situ by intramitochondrial membrane-bound enzymes using CDP-diglycerides as intermediates. The case for the precursors in the latter pathway is less clear, although evidence has been presented for dual localization of enzymes for glycerophosphate acylation and CTP:phosphatidate cytidylyl transfer in both mitochondria and microsomes. Phosphatidylethanolamine also shows evidence for two sites of origin: by translocation from its site of synthesis in the endoplasmic reticulum and by translocation of phosphatidylserine followed by decarboxylation within the mitochondria. In the latter case mitochondrial phosphatidylserine decarboxylase may play an important role in the regulation of phospholipid metabolism throughout the cell.  相似文献   

9.
Giardia lamblia is a protozoan parasite with many characteristics common among eukaryotic cells, but lacking other features found in most eukaryotes. Cardiolipin is a phospholipid located exclusively in energy transducing membranes and it was identified in mitochondria, bacteria, hydrogenosomes and chloroplasts. In eukaryotes, cardiolipin is the only lipid that is synthesized in the mitochondria. Biochemical procedures (TLC, HPLC) and fluorescent tools (NAO) were applied in order to search for cardiolipin in G. lamblia. In addition, BLAST searches were used to find homologs of enzymes that participate in the cardiolipin synthesis. Cardiolipin synthase was searched in the Giardia genome, using Saccharomyces cerevisiae and Mycoplasma penetrans sequences as bait. However, a good match to G. lamblia related proteins was not found. Here we show that mitosomes of G. lamblia apparently do not contain cardiolipin, which raises the discussion for its endosymbiotic origin and for the previous proposal that Giardia mitosomes are modified mitochondria.  相似文献   

10.
11.
12.
Trichomonads, hydrogenosomes and drug resistance   总被引:17,自引:0,他引:17  
Trichomonas vaginalis and Tritrichomonas foetus are sexually transmitted pathogens of the genito-urinary tract of humans and cattle, respectively. These organisms are amitochondrial anaerobes possessing hydrogenosomes, double membrane-bound organelles involved in catabolic processes extending glycolysis. The oxidative decarboxylation of pyruvate in hydrogenosomes is coupled to ATP synthesis and linked to ferredoxin-mediated electron transport. This pathway is responsible for metabolic activation of 5-nitroimidazole drugs, such as metronidazole, used in chemotherapy of trichomoniasis. Prolonged cultivation of trichomonads under sublethal pressure of metronidazole results in development of drug resistance. In both pathogenic species the resistance develops in a multistep process involving a sequence of stages that differ in drug susceptibility and metabolic activities. Aerobic resistance, similar to that occurring in clinical isolates of T. vaginalis from treatment-refractory patients, appears as the earliest stage. The terminal stage is characterised by stable anaerobic resistance at which the parasites show very high levels of minimal lethal concentration for metronidazole under anaerobic conditions (approximately 1000 microg ml(-1)). The key event in the development of resistance is progressive decrease and eventual loss of the pyruvate:ferredoxin oxidoreductase so that the drug-activating process is averted. In T. vaginalis at least, the development of resistance is also accompanied by decreased expression of ferredoxin. The pyruvate:ferredoxin oxidoreductase deficiency completely precludes metronidazole activation in T. foetus, while T. vaginalis possesses an additional drug-activating system which must be eliminated before the full resistance is acquired. This alternative pathway involves the hydrogenosomal malic enzyme and NAD:ferredoxin oxidoreductase. Metronidazole-resistant trichomonads compensate for the hydrogenosomal deficiency by an increased rate of glycolysis and by changes in their cytosolic pathways. Trichomonas vaginalis enhances lactate fermentation while T. foetus activates pyruvate conversion to ethanol. Drug-resistant T. foetus also increases activity of the cytosolic NADP-dependent malic enzyme, to enhance the pyruvate producing bypass and provide NADPH required by alcohol dehydrogenase. Production of succinate by this species is abolished. Metabolic changes accompanying in-vitro development of metronidazole resistance demonstrate the versatility of trichomonad metabolism and provide an interesting example of how unicellular eukaryotes can adjust their metabolism in response to the pressure of an unfavorable environment.  相似文献   

13.
Evolutionary origins of trichomonad hydrogenosomes   总被引:5,自引:0,他引:5  
  相似文献   

14.
The evolutionary processes underlying the differentness of prokaryotic and eukaryotic cells and the origin of the latter's organelles are still poorly understood. For about 100 years, the principle of endosymbiosis has figured into thoughts as to how these processes might have occurred. A number of models that have been discussed in the literature and that are designed to explain this difference are summarized. The evolutionary histories of the enzymes of anaerobic energy metabolism (oxygen-independent ATP synthesis) in the three basic types of heterotrophic eukaryotes those that lack organelles of ATP synthesis, those that possess mitochondria and those that possess hydrogenosomes--play an important role in this issue. Traditional endosymbiotic models generally do not address the origin of the heterotrophic lifestyle and anaerobic energy metabolism in eukaryotes. Rather they take it as a given, a direct inheritance from the host that acquired mitochondria. Traditional models are contrasted to an alternative endosymbiotic model (the hydrogen hypothesis), which addresses the origin of heterotrophy and the origin of compartmentalized energy metabolism in eukaryotes.  相似文献   

15.
Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes.  相似文献   

16.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

17.

Background  

Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather unrelated to taxa with hitherto studied hydrogenosomes.  相似文献   

18.
Assembly of active Fe-hydrogenase in the chloroplasts of the green alga Chlamydomonas reinhardtii requires auxiliary maturases, the S-adenosylmethionine-dependent enzymes HydG and HydE and the GTPase HydF. Genes encoding homologous maturases had been found in the genomes of all eubacteria that contain Fe-hydrogenase genes but not yet in any other eukaryote. By means of proteomic analysis, we identified a homologue of HydG in the hydrogenosomes, mitochondrion-related organelles that produce hydrogen under anaerobiosis by the activity of Fe-hydrogenase, in the pathogenic protist Trichomonas vaginalis. Genes encoding two other components of the Hyd system, HydE and HydF, were found in the T. vaginalis genome database. Overexpression of HydG, HydE, and HydF in trichomonads showed that all three proteins are specifically targeted to the hydrogenosomes, the site of Fe-hydrogenase maturation. The results of Neighbor-Net analyses of sequence similarities are consistent with a common eubacterial ancestor of HydG, HydE, and HydF in T. vaginalis and C. reinhardtii, supporting a monophyletic origin of Fe-hydrogenase maturases in the two eukaryotes. Although Fe-hydrogenases exist in only a few eukaryotes, related Narf proteins with different cellular functions are widely distributed. Thus, we propose that the acquisition of Fe-hydrogenases, together with Hyd maturases, occurred once in eukaryotic evolution, followed by the appearance of Narf through gene duplication of the Fe-hydrogenase gene and subsequent loss of the Hyd proteins in eukaryotes in which Fe-hydrogenase function was lost.  相似文献   

19.
Hydrogenosomes are found in organisms that lack typical mitochondria. Cardiolipin is a phospholipid located exclusively in bacterial membranes and the inner membrane of mitochondria. Here we show, by cell fractionation, thin-layer chromatography, high-pressure liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry that hydrogenosomes of Tritrichomonas foetus, a cattle vaginal parasite, contain cardiolipin, which is strong evidence for its endosymbiotic origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号