首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

2.
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)‐configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.  相似文献   

3.
Magnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. The synthesized materials were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With glutaraldehyde as the coupling agent, the lipase from Serratia marcescens ECU1010 (SmL) was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The results showed that the immobilized protein load could reach as high as 35.2 mg protein g−1 support and the activity recovery was up to 62.0%. The immobilized lipase demonstrated a high enantioselectivity toward (+)-MPGM (with an E-value of 122) and it also displayed the improved thermal stability as compared to the free lipase. When the immobilized lipase was employed to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM] in water/toluene biphasic reaction system for 11 consecutive cycles (totally 105 h), still 59.6% of its initial activity was retained, indicating a high stability in practical operation.  相似文献   

4.
Optically pure 2-chloromandelic acid (ClMA) is a very important chiral drug intermediate for synthesis of (S)-clopidogrel, belonging to the platelet aggregation inhibitor. Enantioselective resolution of (R,S)-2-chloromandelic acid was carried out in organic solvent through irreversible transesterification catalyzed by lipase AK with vinyl acetate acting as the acyl donor. Effects of various conditions on enantioselectivity and activity of lipase were investigated, including organic solvents, temperature, water content, substrate ratio, enzyme loading, and reaction time. Based on homogeneous reaction and Ping-Pong bi-bi mechanism, a quantitative model was constructed to simulate and optimize the reaction process. Under the optimal conditions, excellent results were obtained with high conversion of (R)-2-ClMA (c R, ≥98.85%) and large enantiomeric excess of substrate (ee s, ≥98.15%). There is a good agreement between predicted values and experiment data, which indicates that the established method is a powerful tool for optimization of the enantioselective transesterification process for enantiomers separation.  相似文献   

5.
Summary Increased reaction rates and increased enantioselectivities were observed with decreased concentrations of n-alkanols when resolving 2-methyldecanoic acid by esterification catalysed by immobilised lipase from Candida rugosa at controlled water activities in cyclohexane. The enantioselectivity was found to be independent of the water activity in the reaction medium at the n-heptanol concentrations investigated. However, when n-decanol was used as the acyl acceptor, not only the alcohol concentration but also the water activity in the reaction medium, influenced the enantioselectivity. The results obtained showed that the low enantioselectivity seen at a high alcohol concentration could be explained by the alcohol influencing the apparent V max S and V max R differently.  相似文献   

6.

This work presents the synthesis of new mercapto calix[4]arenes derivatives (4 and 5). These derivatives were capped on Fe3O4 magnetic nanoparticles and subsequently encapsulated with Candida rugosa through sol–gel method to furnish enc-4 and enc-5, respectively, to enhance catalytic activity and enantioselectivity of lipase for hydrolysis reaction of racemic flurbiprofen methyl ester. Catalytic activity and enantioselectivity of enc-4 and enc-5 were assayed at different pH and temperature conditions and it was found that the resultant encapsulated enzyme exhibited higher thermal and operational stabilities compared to the free lipase in which enc-5 showed the excellent rate of enantioselectivity (E = 176) for S-flurbiprofen better than free lipase (E = 137) at pH 7 and 35 °C for 48 h. The time study shows that enantioselectivity reached the maximum value of E = 244 after 72 h. Catalytic activity  of these materials was hardly affected by 20 and 23% after five usages of enc-4 and enc-5, respectively.

  相似文献   

7.
Summary Enzymatic resolution of (±)-endo-bicyclo[2.2.1]hept-5-en-2-ol (1a) catalysed byCandida cylindracea lipase using either acetoneoxime acetate (2a) or biacetyldioxime diacetate (3a) as acyl donor proceeds with moderate to good enantioselectivity (E=13 and 22, resp.) although clear limitations of this method are observed: firstly, a severe depletion of the reaction rate at elevated cosubstrate (acyl donor) concentrations and secondly, the reversibility of the reaction.  相似文献   

8.
The enantioselective esterification of racemic ibuprofen with n-propanol by immobilized Mucor miehel lipase in supercritical carbon dioxide was studied. The enantiomeric excess of the product (eep) was 70 % at 15...20 % conversion. The enantioselectivity was faintly affected by temperature and the concentration of ibuprofen and lipase. The optimum temperature was 45 °C. The initial reaction rate increased with pressure, but enantioselectivity was not affected by pressure changes. The reaction rates in supercritical carbon dioxide at optimized conditions and in n-hexane were similar.  相似文献   

9.
Candida rugosa lipase was immobilized on magnetic nanoparticles supported ionic liquids having different cation chain length (C1, C4 and C8) and anions (Cl, BF4 and PF6). Magnetic nanoparticles supported ionic liquids were obtained by covalent bonding of ionic liquids–silane on magnetic silica nanoparticles. The particles are superparamagnetic with diameter of about 55 nm. Large amount of lipase (63.89 mg/(100 mg carrier)) was loaded on the support through ionic adsorption. Activity of the immobilized lipase was examined by the catalysis of esterification between oleic acid and butanol. The activity of bound lipase was 118.3% compared to that of the native lipase. Immobilized lipase maintained 60% of its initial activity even when the temperature was up to 80 °C. In addition, immobilized lipase retained 60% of its initial activity after 8 repeated batches reaction, while no activity was detected after 6 cycles for the free enzyme.  相似文献   

10.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

11.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

12.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

13.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

14.
Chang CS  Ho SC 《Biotechnology letters》2011,33(11):2247-2253
Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.  相似文献   

15.
Aeropyrum pernix esterase (APE1547) was successfully used to catalyze the enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid (IL). Effects of various reaction conditions on the synthetic activity of the enzyme as well as enantioselectivity, including the type of IL, acyl donor, temperature, water activity, and substrate molar ratio were inverstigated. APE1547 showed good catalytic performance (activity > 0.8 μmol/min/mg, E > 25), and the enzyme-IL mixture was recycled five times with only a slight decrease in catalytic performance.  相似文献   

16.
The lipase-catalysed kinetic resolution of secondary alcohols was studied using vinyl acetate as acyl donor in propylene carbonate. Propylene carbonate offers an environmentally friendly alternative in contrast to conventional solvents. Several different lipases were investigated, and Candida antarctica lipase B (CALB) exhibited better results for all the substrates. It was shown that the addition of non-reactive base triethylamine and silver oxide to the reaction mixture enhanced the reaction rate and enantioselectivity. With propylene carbonate as solvent, CALB could be recycled without significant activity or enantioselectivity losses.  相似文献   

17.
Candida rugosa lipase (CRL) shows high enantioselectivity toward (1R,2S)-(−)-trans-2-phenyl-1-cyclohexanol enantiomer in acetylation reaction employing vinyl acetate as acyl donor. Attempts to improve reaction yields have pointed out that supercritical CO2 is the best reaction medium in the studied biocatalytic process. In these conditions an immobilised lipase from Candida rugosa is able to quantitatively resolve racemate with e.e.p 100%.  相似文献   

18.
The capacity of lipase LipK107 from Proteus sp. catalyzing the kinetic resolution of racemates was investigated. The resolution of racemic 1-phenylethanol in organic medium was selected as model reaction. The conversion was dramatically dependent on the water content and the LipK107 showed high activity in a wide range of water content without appreciable loss of enzyme enantiodiscrimination. Besides, the chain length of acyl donor also had a significant effect on the conversion, and the highest enantioselectivity was achieved when methyl palmitate was used. Based on the analysis of computer model structure of LipK107, different mutations were introduced into the lid region. Each derivative of LipK107 was expressed, purified, and assessed of the activity. According to the prediction, using mutants E130L + K131I and T138V as catalyst, respectively, the conversions of 1-phenylethanol improved greatly with a slight increase of enantiodiscrimination. In addition, the effects of hydrophobicity and electrostatic of the lid on lipase activity were determined. This work indicated that the modification of the lid might considerably enhance the activity and improve the yield of catalytic reactions, which could apply to other lipases. The computer simulations would make the process of identifying amino acids for substitution efficiently.  相似文献   

19.
A novel lipase gene encoded 315 amino acid residues was obtained using lipase-prospecting primers and genome walking from hyperthermophilic bacterium Fervidobacterium changbaicum CBS-1. Sequence alignment and phylogenetic analysis revealed this novel lipase is a new member of bacterial lipase family V. The recombinant enzyme F. changbaicum lipase 1 (FCLip1) showed maximum activity at 78°C and pH 7.8. It displayed extreme thermostability at 70°C and was also stable across a wide pH range from 6.0 to 12.0. Kinetic study demonstrated FCLip1 preferentially hydrolyzed middle-length acyl chains, especially p-nitrophenyl caprate and tricaprylin. With p-nitrophenyl caprate as a substrate, the enzyme exhibited a K m and k cat of 4.67 μM and 22.7/s, respectively. In addition, FCLip1 was resistant to various detergents and organic solvents. This enzyme is the first reported thermophilic lipase from bacterial family Thermotogaceae. Its extreme stability with respect to temperature and pH, along with its triglyceride hydrolysis activity, indicate that FCLip1 has high potential for future application.  相似文献   

20.
Transesterification activity and the industrial potential of a novel lipase prepared from Acinetobacter ventiatus RAG-1 were evaluated. Purified lipase samples were dialyzed against pH 9.0 buffer in a single optimization step prior to lyophilization. The enzyme and organic phase were pre-equilibrated (separately) to the same thermodynamic water activities (a w) ranging from a w 0.33 to 0.97. Production of 1-octyl butyrate by lipase-catalyzed transesterification of vinyl butyrate with 1-octanol in hexane was monitored by gas chromatography. Production of 1-octyl butyrate and initial rate of reaction depended on water activity. Product synthesis and rate of transesterification increased sharply with increase from a w 0.33 to 0.55. Highest product concentration (218 mM) and rate of reaction (18.7 μmol h−1 · 10 μg protein) were measured at a w 0.86. Transesterification activity in hexane represented 32% of comparable hydrolytic activity in aqueous buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号