首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiasma frequency and position were analyzed at a predominantly late diplotene-diakinesis stage of the first meiotic division in oocytes and spermatocytes from T(1;13)70H homozygotes and heterozygotes, T(2;8)26H heterozygotes and from Ts(I13)70H tertiary trisomics of the mouse, Mus musculus. For T70H/T70H, the 131 long marker bivalent was studied and for the other karyotypes, analysis was confined to the multivalent configurations adopted by the rearranged chromosomes and their homologues. For the 131 bivalent, the chiasma frequency tended to be increased in the female. For the T26H and the T70H multivalents, the chiasma frequencies were higher in the female, largely due to the much higher values in the short interstitial segments. This observed enhancement has been attributed to pairing differences rather than to differences in chiasma forming capability. Both in the telomeric region of the 131 bivalent and in the short translocated segments of the reciprocal translocation and tertiary trisomic multivalents, females showed fewer chiasmata than males. The determinations of chiasma position in the 131 bivalent indicated chiasma interference with respect to position, leading to clustering of chiasmata somewhat beyond the centromere and towards the telomere of this chromosome.  相似文献   

2.
The prophase oocytes of two murine Robertsonian translocation (Rb) trisomies of chromosomes 16 and 19 were investigated using electron microscopy and a whole-cell micro-spreading technique after silver staining. About 20% of fetuses of each type were trisomic. They were obtained by mating animals heterozygous for two Rb's, monobrachially homologous for either chromosome 16 or 19, to an entirely acrocentric stock. Because of the almost inevitable prenatal mortality of the trisomic embryos, their fetal ovaries were "rescued" by an in vitro method for prophase studies. Analysis of the recovered oocytes showed frequent, close pairing associations of the three trisomic axes and evidence suggesting that the closely apposed axes coincided with the side-by-side formation of parallel, complete, true synaptonemal complexes; hence, the cytogenetic dogma that pairing is always two-by-two was contradicted. The presence of two parallel complexes has implications for crossing-over recombination. Triple associations of axes were found in almost half the trisomy 19 (Ts19) and in about 70% of the trisomy 16 (Ts16) prophases. The extent of triple associations varied and was greater in Ts16 than in Ts19 oocytes. Other relevant observations concerned the proportions of univalents and of univalence of the trisomic axes (21% in Ts16 and 46% in Ts19) and the distinctive, thickened appearance of all univalent axes. The pairing behaviour observed in balanced heterozygotes confirms what appears to be nonhomologous pairing and synaptic adjustment within the short-arm axes of the Rb trivalents.  相似文献   

3.
First and second meiotic metaphases (MI and MII, respectively) from female mice of Robertsonian translocation (Rb) stock, trisomic for chromosome 16 (Ts16) or 19 (Ts19), were studied. The mature trisomic oocytes were derived from explanted fetal ovaries that had been cultured and then transplanted so as to mature heterotopically. Multivalent configurations involving the Rb chromosomes and the additional trisomic acrocentric were analysed. Pentavalent configurations occurred in 74.5% of 98 Ts16 MI and 44.2% of 249 Ts19 MI oocytes; quadrivalents (with a univalent acrocentric) were found in 9.2% of Ts16 MI and 10.8% of Ts19 MI oocytes. In 1% of Ts16 MI and 4% of Ts19 MI oocytes, there were two Rb bivalents and a univalent trisomic acrocentric. Rb trivalents and Rb bivalents occurred together in 14.3% of Ts16 MI and 39.4% of Ts19 MI oocytes. Chiasma frequencies were similar in trisomic and chromosomally balanced MI. Chiasma position, distribution, and localization were nearly identical, whether they were found in Rb multivalents or acrocentric bivalents, but one control group (from chromosomally balanced Ts19 littermates) had significantly more terminal chiasmata. Within the triple homologous region of 8% of Rb pentavalents, two chiasmata were observed in the same relative position in the two sister chromatids of one of the three homologs, suggesting a lapse in chiasma position interference. Assortment at MI anaphase was influenced by secondary nondisjunction of the Rb. The ratio of balanced to unbalanced MII oocytes was 1:4 in both trisomies.  相似文献   

4.
Baart EB  de Rooij DG  Keegan KS  de Boer P 《Chromosoma》2000,109(1-2):139-147
In this study, we examined the suitability of a three dimensional preparation technique for studying chromosome behaviour in the first meiotic prophase in the mouse chromosomal mutant T(1;13)H/T(1;13)Wa. To preserve cellular shape, primary spermatocytes were encapsulated in a fibrin clot. Conventionally sedimented prophase nuclei served as controls. Axial elements and lateral synaptonemal complex components were subsequently stained by immunofluorescence and the presence of axial elements at the pachytene stage was highlighted with indirect immunofluorescence against the Atr protein. We compared the distribution of Atr signal in the fibrin-embedded spermatocytes with surface-spread preparations and immunohistochemically stained histological sections of seminiferous tubules. Furthermore, fluorescence in situ hybridisation of the mouse minor satellite DNA was done on fibrin-embedded spermatocytes. The Atr signal is most conspicuous in fibrin-embedded nuclei on unpaired axial elements during pachytene, both for sex chromosomal and for autosomal segments, and expanding from these elements into the surrounding chromatin. Both spread and encapsulated zygotene nuclei with extended axial element formation proved to be positive for Atr. Mid- to late zygotene nuclei were devoid of 3,3′-diaminodibenzene deposition in the histological sections. Highlighting the unpaired axial elements in the small heteromorphic 113H;113Wa bivalent with an Atr signal enabled meiotic analysis of this bivalent to be carried out in a three-dimensional context. Thus, proximity of this bivalent with the sex chromosomes is found more often in three-dimensional preparations than in spread preparations. Furthermore, the development of the Atr signal over the sex chromosomes as pachytene proceeds helps in substaging of this long and heterogeneous meiotic phase, in sedimented but especially in fibrin-encapsulated nuclei. Received: 22 September 1999; in revised form: 20 December 1999 / Accepted: 21 December 1999  相似文献   

5.
Whole-mount preparations of silver-stained spermatocytes and oocytes from Ts(512)31H mice were examined in the electron microscope. The 5(12) chromosome was associated with the XY bivalent in the large majority of spermatocytes, whereas in about one-half of the oocytes, the 5(12) was associated with either unpaired chromosomes or heterochromatic parts of chromosomes or showed self-synapsis. There was a tendency for 5(12) chromosomes to be more fully heterochromatic in oocytes than in spermatocytes. A large proportion of oocytes (50%) and a much smaller proportion of spermatocytes exhibited various errors of chromosome pairing, but these proportions were only marginally greater than in control gametocytes from mice with normal karyotypes. It is concluded that the observed errors of pairing bear no simple relation to the almost complete breakdown of spermatogenesis and the marked impairment of oogenesis that occur in tertiary trisomic Ts(5(12))31H mice.  相似文献   

6.
Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes.  相似文献   

7.
P. de Boer  R. M. Speed 《Chromosoma》1982,87(3):315-325
Meiosis of T70H/+, Ts(113)70H translocation trisomic male mice has been studied using C-banded preparations and 3H-thymidine autoradiography of the first meiotic division. Epididymal sperm counts and sperm morphology scores were also collected. As reported earlier, at the first meiotic division the translocation involved chromosomes 1, 13, 131 and 113 (twice) formed mainly three multivalent configurations: Chain III+II, CIV+I and CV. — The autoradiographic study indicated an abnormal, precocious spiralization pattern for the chromatin in CIV+I primary spermatocytes. These cells, occurring together with the CIII+II and CV configurations in recognizable groups, usually descending from single spermatogonial stem cells, are delayed through meiotic prophase. Both delay and disturbed chromosome spiralization in these cells are attributed to the uniform association of the univalent (I) chromosome 113 with the sex chromosomes during pachytene. Primary spermatocytes of the CIV+I configuration and those carrying a CV take longer to develop from metaphase I into secondary spermatocytes than does the CIII+II type. — In T70H tertiary trisomics with a similar chromosome imbalance, the majority of primary spermatocytes degenerates during the diakinesis-metaphase I stages of meiosis. Fertility is low in contrast to the translocation trisomics. Comparison between the two types leads to the conclusion, that trisomy per se reduces the size of the testes and that the univalent containing CIV+I primary spermatocytes, contrary to the almost uniformly 113 univalent carrying spermatocytes of the T70H tertiary trisomics are rescued by the neighbouring CIII+II and CV carrying cells to form normal secondary spermatocytes and morphologically normal sperm.  相似文献   

8.
Summary Variation in male and female transmission of the translocated extra chromosome (5R3R) was studied in a tertiary trisomic of rye (Secale cereale L.). In two F5 lines derived from a single F4 line, female transmission was lower than in five others derived from another F4 line. This could be caused by genetic factors or by the strong inbreeding depression in these lines, leading to low viability of trisomic progeny. After selfing, male transmission was estimated as very low, but this was primarily based on the occurrence of tetrasomics that probably have a very poor viability. In testcrosses with disomic female parents, male transmission was much higher (up to 27%), without variation within F5 lines. One F5 line showed significantly higher male transmission than any of the seven tested, including a sister line from the same F4. This was consistent in the F6. Apparently high male transmission is genetically determined. There was a positive correlation with recombination of the marker ti (tigrina) on the extra chromosome and the normal 5R chromosomes. At the first meiotic metaphase, trivalents and quinquivalents were frequent in the trisomics. Assuming loss of univalents, 40% of the microspores should carry the translocated extra chromosome. In most lines, more than 40% were found at pollen mitosis. Observations on timing of pollen mitosis showed a delayed development in aneuploid spores, with clear differences between plants, but no correlation with male transmission. The cause of reduced male transmission and the expression of genetic variation therein can, therefore, not be found in meiotic behaviour or delayed microspore development. Pollen germination and tube growth may be more important.  相似文献   

9.
Maize tertiary trisomic stocks derived from B-A translocations   总被引:2,自引:0,他引:2  
Reciprocal translocations between supernumerary B chromosomes and the basic complement of A chromosomes in maize have resulted in a powerful set of tools to manipulate the dosage of chromosomal segments. From 15 B-A reciprocal translocation stocks that have the B-A chromosome genetically marked we have developed tertiary trisomic stocks. Tertiary trisomics are 2n + 1 aneuploids where the extra chromosome is a translocation element, in this case a B-A chromosome. Whereas B-A translocations produce aneuploidy in the sperm, the tertiary trisomic plant efficiently transmits hyperploid gametes maternally. Because the B-A tertiary trisomic stocks and the B-A translocation stocks from which they were derived are introgressed into the W22 inbred line, the effects of maternally and paternally transmitted trisomic B-A chromosomes can be compared. Data are presented on both the male and female transmission rates of the B-A chromosomes in the tertiary trisomic stocks.  相似文献   

10.
11.
Four tertiary trisomic plants are reported here, two of them (Nos. Tr11 and Tr13) from selfed progeny of a triploid Pearl millet and the other two (Nos. 3/12 and 16/7) from the progenies of radiation induced interchange heterozygotes. The extra chromosome in Tr13 and 3/12 was the nucleolus organizing chromosome. In No. 16/7 an extra chromosome enters into an association chromosomes were also involved. Meiotic behaviour in these four trisomics indicates that Tr11 and 3/12 are tertiary trisomics. It is suggested that two reciprocal translocations have occurred between two sets of chromosomes in the triploid parent and that syngamy has taken place in such a way that four interchange chromosomes and one non-interchange nucleolus organizing chromosome have come together in the offspring. The extra chromosome in No. 16/7 is an interchange chromosome which is homologous to one of the chromosomes of an interchange complex of six chromosomes.  相似文献   

12.
Meiosis in a double trisomic Brassica campestris (2n=20+1+1) found among the progeny of autotriploid B. campestris (3n=30) was studied to detect homologies of duplicate types of chromosomes in the a genome of Brassica. The two extra chromosomes paired with the corresponding homologues and formed two trivalents in 10.5% of nuclei revealing the double trisomic nature. They formed a separate bivalent in 15.6% of nuclei proving the homology of these two chromosomes in the a genome. Anaphase I and II segregations revealed a normal disjunction of chromosomes.Emeritus Professor of Botany & Emeritus Scientist, Indian Council of Agricultural Research.  相似文献   

13.
The effect of para-fluorophenylalanine (PFP) on the production of trisomic plants of Agave tequilana Weber var. Azul produced through somatic embryogenesis was investigated. Normal diploid plants with 2n = 2x = 60 were obtained in the control treatment and with 4 mg L−1 PFP exposure, while use of 8 and 12 mg L−1 PFP led to production of trisomics with 2n = 2x = 61. Normal diploid plants showed a bimodal karyotype with five pairs of large chromosomes and 25 pairs of small chromosomes. Trisomic plants also had a bimodal karyotype with a group of three chromosomes in position five of the chromosome set. More than 13 homologous chromosome pairs exhibited structural changes. Differences in chromosome arm ratio (long arm/short arm) were also found in eight chromosome pairs; all these aberrations in the chromosome complement of trisomic plants were probably caused by inversions, deletions, and/or duplications produced by high concentrations of PFP. The gross chromosome structural changes and the presence of a single extra chromosome could have been induced by the effect of PFP on the mitotic spindle by inducing nondisjunction of sister chromatids, resulting in hyperploids (2n + x) and hypoploids (2nx). Flow cytometric analysis of nuclear DNA content was performed using nuclei isolated from young leaves of normal and trisomic plants. The 2C DNA content of 8.635 pg (1Cx = 4,223 Mbp of trisomic plants was different (p < 0.001) than that of normal plants (2C DNA = 8.389 pg (1Cx = 4,102 Mbp). The difference in genome size was correlated with the large structural changes in the trisomic plant genomes.  相似文献   

14.
Down's syndrome in the male. Reproductive pathology and meiotic studies   总被引:10,自引:3,他引:7  
Studies on testicular histology and meiosis were carried out by the use of light and electron microscopy in an 18-year-old Down's syndrome male in an attempt to follow the fate of the extra chromosome 21 and to evaluate the effects of this condition on spermatogenesis and the reproductive functions. The histological changes in the testes corresponded to spermatogenic arrest. Electron microscopic whole-mount spreadings of meiotic cells in the pachytene stage showed that in most nuclei an extra chromosome 21 was not detectable. Only in a small number of nuclei, univalents or trivalents with segmental pairing structures of an extra chromosome could be discovered. In contrast, the great majority of (C-banded) diakinesis figures showed the presence of a supernumerary G (no. 21) chromosome. The absence of a traceable extra chromosome 21 in most pachytene cells is explained by the assumption that it is intimately connected with and hidden in the sex vesicle, whose complex structure does not allow the identification of single elements. Strong support for this assumption is seen (a) in the general tendency of narrow spatial association of unpaired segments with the XY complex and (b) in close structural similarities occurring between univalents or nonsynapsed segments of trivalents and the nonpaired segments of the sex chromosomes. It is suggested that the association or connection of an extra chromosome with the XY complex during pachytene interferes with the phenomenon of X inactivation. In animal systems such abnormal interference is related with spermatogenic breakdown and, in a general way, with male hybrid type sterility. So far, the range of sterility vs. fertility in cases of male Down's syndrome is not yet fully clear, but it appears that impairment of fertility, and sterility are most frequent. If so, it is proposed that the effect of the trisomy 21 condition on spermatogenesis (and fertility) is a consequence of the behavior of the extra chromosome in the meiotic prophase.  相似文献   

15.
T. Tsuchiya 《Chromosoma》1969,26(2):130-139
In the progeny of a trisomic type for chromosome 6, Purple, a 16-chromosome type was obtained, which had a pair of new metacentric chromosome 6 in excess. The new metacentric chromosome 6 was shorter than any of the 14 chromosomes of normal barley complement and showed a heteropycnotic nature at late prophase in somatic mitosis. At metaphase I in the plants with 14+one metacentric chromosome 6 (2n=15) the chromosome configuration was exclusively 7II+1I indicating that the extra metacentric chromosome 6 could not associate with the normal chromosome 6. At diakinesis and metaphase I in the new 16-chromosome plants most of the sporocytes showed 8IIor 7II+2I. Neither tetravalents nor trivalents were observed at meiosis. The chromosome behaviour at anaphase I and later stages of meiosis was regular in general, resulted in a fairly high pollen fertility of about 61 per cent. Seed fertility however, was very low. The transmission rate of the new metacentric chromosome 6 through the pollen was extremely low in 16-chromosome plants. Possible origin of new basic number and B-chromosome in diploid level through trisomic condition was suggested (Summary see p. 138).Contribution No. 141 of the Department of Plant Science, University of Manitoba.  相似文献   

16.
Meiotic segregation of sex chromosomes from two fertile 47,XYY men was analysed by a three-colour fluorescence in situ hybridisation procedure. This method allows the identification of hyperhaploidies (spermatozoa with 24 chromosomes) and diploidies (spermatozoa with 46 chromosomes), and their meiotic origin (meiosis I or II). Alpha-satellite probes specific for chromosomes X, Y and 1 were observed simultaneously in 35 142 sperm nuclei. For both 47,XYY men (24 315 sperm nuclei analysed from one male and 10 827 from the other one) the sex ratio differs from the expected 1:1 ratio (P < 0.001). The rates of disomic Y, diploid YY and diploid XY spermatozoa were increased for both 47,XYY men compared with control sperm (142 050 sperm nuclei analysed from five control men), whereas the rates of hyperhaploidy XY, disomy X and disomy 1 were not significantly different from those of control sperm. These results support the hypothesis that the extra Y chromosome is lost before meiosis with a proliferative advantage of the resulting 46,XY germ cells. Our observations also suggest that a few primary spermatocytes with two Y chromosomes are able to progress through meiosis and to produce Y-bearing sperm cells. A theoretical pairing of the three gonosomes in primary spermatocytes with an extra sex chromosome, compatible with active spermatogenesis, is proposed. Received: 12 April 1996 / Revised: 26 August 1996  相似文献   

17.
Many questions related to the development and the phenotypic expression of trisomy (Ts) are amenable to systematic investigation in a mouse model that allows the induction of Ts 1 to 19 by a breeding design of mice heterozygous for Robertsonian metacentric chromosomes. Some Ts do not survive the first critical phase of organogenesis on days 11 to 12 of fetal development; others as Ts 12, 14, 16, 18, and 19, have a life span until or beyond birth. Model type studies of the morphogenesis of developmental anomalies (e.g. craniocerebral, cardiovascular, or placental) are possible in Ts with a longer developmental span, and Ts 16 of the mouse is considered as a natural model of human trisomy 21. The eventual breakdown and death of the trisomic organism are inevitable. There is considerable interest to find ways for rescue and longer survival of Ts in competitive developmental systems, as e.g., in Ts in equilibrium with 2n blastocyst chimeras, or by isolation of trisomic cellular or tissue systems. Thus, the transfer of Ts hemopoietic stem cells of the fetal liver to irradiated adult recipients is a means of studying the functional capacities and maturation of trisomic hemopoiesis and lymphopoiesis. Both are almost completely restored by Ts 12, 14, 18, and 19 stem cell transplantation with survival periods of more than 6 months. But in other Ts, as of chromosomes 13 or 16, such capacity of reconstitution is impaired. The stepwise analysis of the effects of chromosome triplication on the cell level, in isolated functional systems and in the embryonic organism, is a promising way to understand the phenotypic expression of genome anomalies in complex developmental processes.  相似文献   

18.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   

19.
Reduced oocyte numbers in tertiary trisomic mice with male sterility   总被引:1,自引:0,他引:1  
Oocyte counts carried out in 3- to 5-day-old tertiary trisomic Ts(5(12))31H mice revealed a mean reduction of 71% in the number of oocytes as compared with that of normal littermates. The pool of small oocytes was reduced by 75%, and the number of growing oocytes by 8%. The sperm count of the trisomic males was less than 1% of normal, with most spermatozoa being abnormal (Beechey et al., 1980). These results indicate that the presence of the extra 5(12) chromosome, which causes male sterility, also has a marked effect on oogenesis. Possible reasons for the difference in severity of the gametogenic impairment in males and females are discussed.  相似文献   

20.
Z X Wang  N Iwata 《Génome》1995,38(4):696-705
Eight types of aneuhaploids (Aneuhaplo 4, 5, 6, 8, 9, 10, 11, and 12) and eight types of tetrasomics (Tetraplo 4, 5, 6, 7, 8, 9, 10, and 12) of rice have been obtained from anther culture of trisomics. This paper reports the plant morphology of these aneuploids and their chromosome behavior at metaphase I. Aneuhaploids for different chromosomes are distinguishable from each other and are morphologically similar to the parental trisomics, suggesting that the extra chromosome has similar genetic effects on plant morphology at the haploid level as at the diploid level. Similarly, tetrasomics with different extra chromosomes are distinguishable from each other and are similar morphologically to the parental trisomic. However, stronger changes in morphological characters were observed in tetrasomics compared with trisomics having the same extra chromosome, as a result of a dosage effect of the extra chromosomes. Comparing plant size between aneuhaploid, tetrasomic, and trisomic with the same extra chromosome, it was shown that the trisomic was the largest, the tetrasomic was of medium size, and the aneuhaploid was the smallest, except for those plants with an extra chromosome 8 in which plant size is dramatically decreased in both the aneuhaploid and the tetrasomic. At metaphase I, aneuhaploids showed chromosome configurations of 1 II + 11 I and 13 I. The frequency of the 1 II + 11 I configuration is higher than 70%, indicating that homologous chromosomes in aneuhaploids tend to stay associated in meiosis. Intragenome chromosome pairing (2 II + 9 I), so called secondary association, was observed in the aneuhaploid for chromosome 5. Tetrasomic plants showed 5 kinds of chromosome configurations: 1 IV + 11 II, 1 III + 11 II + 1 I, 13 II, 12 II + 2 I, and 11 II + 4 I. A chromosome configuration of 13 II was often observed in tetrasomics with shorter extra chromosomes and a chromosome configuration of 1 IV + 11 II was often observed in tetrasomics with longer extra chromosomes. Aneuhaploids had complete seed sterility. Tetrasomics showed very poor pollen fertility and complete seed sterility, except for a few shriveled seeds that were observed in Tetraplo 6 and 9. This is the first report in rice where many aneuhaploids and tetrasomics have been characterized. This information will help to further unravel rice aneuploidy and cytogenetics. The aneuploids obtained here will be very useful tools for the study of genetics and breeding in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号