首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most abundant lipid and protein components of human plasma high density lipoproteins are phosphatidylcholine and apolipoprotein A-I (A-I). Under appropriate conditions, A-I spontaneously associates with dimyristoylphosphatidylcholine (DMPC) to quantitatively form a lipid-protein complex with a DMPC/A-I molar ratio of 100:1. Differential scanning calorimetry of this complex reveals two broad thermal transitions centered at approximately 27 and 72 degrees C. 13C NMR spectra of the complex have been obtained above, at, and below the lower transition temperature. The 13C resonance arising from the 3' carbon of the fatty acyl chains is a doublet, split by approximately 0.2 ppm, suggesting that the 3' carbon nuclei occupy two magnetically inequivalent sites. By replacing the sn-2 fatty acyl chain with myristate selectively 13C-enriched at carbon 3', we have shown that the splitting is, in fact, a result of magnetic inequivalence of the two sites and have assigned the lower field resonance to the 3' carbon nucleus of the sn-2 chain. The temperature dependence of the NMR relaxation rates indicates that the endothermic transition at 27 degrees C is associated with increased motional freedom for the phospholipids within this complex. The temperature dependence of the fatty acyl chain methylene 13C chemical shifts suggests that the population of gauche conformers increases above the transition temperature. These dynamic and conformational changes are characteristic of gel----liquid crystalline phase transitions observed in pure phospholipid systems. For the DMPC-A-I complex at 37 degrees C, the chemical shifts of the fatty acyl C 4'- 11' methylene envelope and of the C 7' and C 13' resonances occur significantly downfield from the corresponding chemical shifts for the DMPC vesicle. These results suggest that the apoprotein rigidifies the acyl chains by increasing their number of trans conformers.  相似文献   

2.
The purpose of this study was to test the hypothesis that lipid fluidity regulates lecithin:cholesterol acyltransferase (LCAT) activity. Phosphatidylcholine (PC) species were synthesized that varied in fluidity by changing the number, type (cis vs. trans), or position of the double bonds in 18 or 20 carbon sn-2 fatty acyl chains and recombined with [(3)H]cholesterol and apolipoprotein A-I to form recombinant high density lipoprotein (rHDL) substrate particles. The activity of purified human plasma LCAT decreased with PC sn-2 fatty acyl chains containing trans versus cis double bonds and as double bonds were moved towards the methyl terminus of the sn-2 fatty acyl chain. The decrease in LCAT activity was significantly correlated with a decrease in rHDL fluidity (measured by diphenylhexatriene fluorescence polarization) for PC species containing 18 carbon (r(2) = 0.61, n = 18) and 20 carbon (r(2) = 0.93, n = 5) sn-2 fatty acyl chains. rHDL were also made containing 10% of the 18 carbon sn-2 fatty acyl chain PC species and 90% of an inert PC ether matrix (sn-1 18:1, sn-2 16:0 PC ether) to normalize rHDL fluidity. Even though fluidity was similar among the PC ether-containing rHDL, the order of PC reactivity with LCAT was significantly correlated (r(2) = 0.71) with that of 100% PC rHDL containing the same 18 carbon sn-2 fatty acyl chain species, suggesting that PC structure in the active site of LCAT determines reactivity in the absence of measurable differences in bilayer fluidity. We conclude that PC fluidity and structure are major regulators of LCAT activity when fatty acyl chain length is constant.  相似文献   

3.
The physical methods (13C-NMR-spectroscopy and fluorescence spectroscopy) hitherto used for the elucidation of lipid-lipid and lipid-protein interactions in artificial and simple natural membranes were extended to the application of fatty acids, phospholipids and sphingolipids with photochemical labels (azide group) in defined positions, which on photolysis generate nitrenes. These highly reactive groups react with neighbouring molecules, either lipids or polypeptide chains, with insertion or addition. Highly radioactive 12-azido[9,10-3H2]stearic acid, 12-azido[12-3H]oleic acid and 18-azido-[9,10,12,13-3H4]linoleic acid were added to the growth medium of eukaryotic cell lines in tissue culture (BHK 21 cells and Chang liver cells). They were incorporated into neutral, phosphoand sphingolipids in amounts comparable with the unsubstituted parent fatty acids. The distribution of the azido fatty acids in the phospholipids has been determined by enzymatic hydrolysis (phospholipase A2) on the basis of the distribution of their radioactivity. Radio gas chromatography and combined gas chromatography and mass spectroscopy revealed that the azide group of the radioactive fatty acids remained unaltered.  相似文献   

4.
We have identified a protein in the soluble fraction from mouse cardiac tissue extracts which is rapidly and selectively acylated by myristyl CoA. This protein was partially purified by anion-exchange chromatography and gel filtration, and the acylation reaction was measured using [3H]myristyl CoA as substrate, followed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis to resolve [3H]fatty acyl polypeptides. The [3H]acyl protein migrated as heterogeneous bands corresponding to relative masses (MrS) of 42,000-51,000 under nonreducing conditions or as a single polypeptide of Mr 51,000 in the presence of reducing agents. Fatty acyl chain incorporation into protein was very rapid and already maximum after 30 s of incubation, whereas no acylation was detected using heat-denatured samples or when the reaction was stopped immediately after initiation. Only the acyl CoA served as fatty acyl chain donor. No incorporation into protein occurred when myristyl CoA was substituted by myristic acid, ATP, and CoA. A time-dependent reduction in the level of [3H]fatty acyl polypeptide was observed upon addition of excess unlabeled myristyl CoA, indicating the ability of the labeled acyl moiety of the protein to turn over during incubation. The saturated C10:0, C14:0, and C16:0 acyl CoAs were more effective to chase the label from the [3H]acyl polypeptide than the C18:0 and C18:1 acyl CoAs. These results provide evidence for a 51-kilodalton polypeptide which serves as an acceptor for fatty acyl chains and could represent an important intermediate in fatty acyl chain transfer reactions in cardiac tissue.  相似文献   

5.
J L Soulages  E L Arrese 《Biochemistry》2001,40(47):14279-14290
Quenching of tryptophan fluorescence by nitroxide-labeled phospholipids and nitroxide-labeled fatty acids was used to investigate the lipid-binding domains of apolipophorin III. The location of the Trp residues relative to the lipid bilayer was investigated in discoidal lipoprotein particles made with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and five different single-Trp mutants of apoLp-III. A comparison of the quenching efficiencies of phospholipids containing nitroxide groups at the polar head, and at positions 5 and 16 of the sn-2 acyl chain, indicated that the protein is interacting with the acyl chains of the phospholipid along the periphery of the bilayer of the discoidal lipoprotein. N-Bromosuccinimide readily abolished 100% of the fluorescence of all Trp residues in the lipid-bound state. Larger quenching rates were observed for the Trp residues in helices 1, 4, and 5 than for those located in helices 2 and 3, suggesting differences between the interaction of these two groups of helices. However, the extent of Trp fluorescence quenching observed in lipoproteins made with any of the mutants was comparable to that reported for deeply embedded Trp residues, suggesting that all Trp residues interact with the phospholipid acyl chains. This study provides the first experimental evidence of a massive interaction of the alpha-helices of apoLp-III with the phospholipid acyl chains in discoidal lipoproteins. The extent of interaction deduced is consistent with the apolipoprotein adopting a highly extended conformation.  相似文献   

6.
The chemical structure of the free lipid A isolated from Mesorhizobium huakuii IFO 15243(T) was elucidated. Lipid A is a mixture of at least six species of molecules whose structures differ both in the phosphorylation of sugar backbone and in fatty acylation. The backbone consists of a beta (1'-->6) linked 2,3-diamino-2,3-dideoxyglucose (DAG) disaccharide that is partly substituted by phosphate at position 4'. The aglycon of the DAG-disaccharide has been identified as alpha-D-galacturonic acid. All lipid A species carry four amide-linked 3-hydroxyl fatty residues. Two of them have short hydrocarbon chains (i.e. 3-OH-i-13:0) while the other two have longer ones (i.e. 3-OH-20:0). Distribution of 3-hydroxyl fatty acids between the reducing and nonreducing DAG is symmetrical. The nonpolar as well as (omega-1) hydroxyl long chain fatty acids are components of acyloxyacyl moieties. Two acyloxyacyl residues occur exclusively in the nonreducing moiety of the sugar backbone but their distribution has not been established yet. The distal DAG amide-bound fatty acid hydroxyls are not stoichiometrically substituted by ester-linked acyl components.  相似文献   

7.
High-molecular-weight (high-Mr) kininogen was purified from horse plasma by chromatography on columns of DEAE-Sephadex A-50, CM-Sephadex C-50, p-chlorobenzylamine-Sepharose and Sephadex G-150. The yield was about 150 mg from 81 of fresh plasma. The purified material gave a single band on sodium dodecylsulfate/polyacrylamide gel electrophoresis and a single precipitin line on immunodiffusion and immunoelectrophoresis. The molecular weight of horse high-Mr kininogen was estimated to be 78000 by dodecylsulfate gel electrophoresis using the Ferguson plot. Its polypeptide content was determined to be 86% by amino acid analysis and there was a total of 581 amino acid residues/molecule of protein. The kininogen contained a total of 13.9% carbohydrates, consisting of hexoses (7.8%), glucosamine (1.9%), galactosamine (0.6%) and sialic acid (3.6%). On incubation of horse high-Mr kininogen with bovine and horse plasma kallikreins, several fragments which contained extremely high levels of histidine, were liberated, in addition to kinin. After the liberation of kinin and histidine-rich fragments, a protein free of kinin and its fragments was isolated. This protein consisted of two polypeptide chains, heavy chain and light chain, which are bridged by disulfide bonds. The molecular weight and amino acid composition of the heavy chain and the light chain from horse high-Mr kininogen were very similar to those of the heavy and light chains from bovine high-Mr kininogen, respectively. From these results, it was revealed that horse high-Mr kininogen is quite similar to bovine high-Mr kininogen in terms of their physicochemical and chemical properties, although they are immunologically distinguishable.  相似文献   

8.
Mixed acyl chain phosphatidylcholine molecules in Triton N-101 micelles were employed as substrates for lipoprotein lipase to test which substrate acyl chain has the greatest effect on activation of the enzyme by apolipoprotein C-II. The phospholipase A1 activity of lipoprotein lipase was measured by pH-stat. The activation factor (lipoprotein lipase activity plus apolipoprotein C-II/activity minus apolipoprotein C-II) increased monotonically with apolipoprotein C-II concentration up to 1 microM apolipoprotein C-II at an enzyme concentration of 0.01 microM. The maximal activation factor for phosphatidylcholine substrate molecules with sn-2 acyl chain lengths of 14 averages 14.8. By contrast, for sn-2 acyl chain lengths of 16 the activation factor was 29.2. Varying the sn-1 acyl chain length had no significant effect on the activation factor. The chain-length dependence of the activation factor is similar with the apolipoprotein C-II peptide fragment comprising residues 56-79, which does not include the lipid-binding region of apolipoprotein C-II. These data are consistent with a model for activation of lipoprotein lipase in which residues 56-79 bind to lipoprotein lipase and alter the interaction of the sn-2 acyl chain of the phosphatidylcholine (PC) substrate or the lysoPC product within the activated state complex.  相似文献   

9.
The interaction of the ion channel polypeptide gramicidin A with the L-alpha-lysophosphatidylcholine micelles in a membrane state association (approximative molar ratio 1:9) was investigated by Raman spectroscopy. Studies were carried out over the spectral ranges of 700-1700 cm-1 and 2800-3100 cm-1 at 10 degrees C. The Raman spectrum of L-alpha-lysophosphatidylcholine micelles indicated a disordered structure of the lipid acyl chains by the high intensities of the gauche conformation vibrations. Changing from the micellar phase to the membrane state of association with gramicidin A, the intensities of all-trans stretching modes increased whereas the intensities of gauche conformation vibrations decreased, reflecting the emergence of ordered lipid chains. Hydrophobic interactions between the acyl chains and the polypeptide side chain residues were demonstrated. The absence of modifications in intensities of the very strong tryptophan vibrations in the complex spectrum indicated that, if the tryptophan-stacking interactions suggested by some authors exist, they are very weak ones.  相似文献   

10.
Apolipoprotein F (ApoF), one of the minor apolipoproteins in human plasma, has been recently isolated and partially characterized [Olofsson, S.O., McConathy, W.J., & Alaupovic, P. (1978) Biochemistry 17, 1032-1036]. In the present work, the interaction of ApoF with other apolipoproteins and lipids in human plasma was studied. By the successive use of immunosorbers specific for ApoF, apolipoprotein A-II (ApoA-II) and apolipoprotein A-I (ApoA-I), three different ApoF-containing lipoproteins were isolated from normolipidemic fasting human plasma. Their apolipoprotein content was determined by double immunodiffusion against monospecific antisera to all known serum apolipoproteins, electroimmunoassay, crossed immunoelectrophoresis, and polyacrylamide gel electrophoresis. Their lipid composition was determined by thin-layer chromatography. The three ApoF-containing lipoproteins were identified as LpF:A-I:A-II (lipoprotein containing ApoF, ApoA-I, and ApoA:II), LpF:A-I (lipoprotein containing ApoF and ApoA-I), and LpF (lipoprotein containing only ApoF). LpF:A-I:A-II was found to contain ApoF, ApoA-I, and ApoA-II in an apparent 2:1:1 molar ratio. Its lipid moiety was characterized by cholesterol ester (45%) and free cholesterol (28%) as the predominant lipids. LpF contained only ApoF, and in its major lipid components were also cholesterol esters (63%) and free cholesterol (21%). It is suggested that ApoF-containing lipoproteins may be involved in transport and/or esterification of cholesterol.  相似文献   

11.
The specificities of a human plasma and bovine liver phospholipid transfer protein were studied using a fluorescence assay based on the transfer of pyrenyl phospholipids. This method was used previously to determine the mechanism of spontaneous transfer of phospholipids between model lipoproteins (Massey, J.B., Gotto, A.M., Jr. and Pownall, H.J. (1982) Biochemistry 21, 3630-3636). The pyrenyl phospholipids varied in the headgroup moiety; pyrenyl phosphatidylcholines contained different fatty acyl chains in the sn-1 position. Model high-density lipoproteins (R-HDL) consisting of apolipoprotein A-I and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were used as donor and acceptor particles. As previously shown, the bovine liver protein mediated the transfer of only phosphatidylcholine. In contrast, the human plasma protein transferred all species studied which included a phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, sphingomyelin, galactosylcerebroside, and a diacylglycerol. The activity of these transfer proteins was only slightly affected by changes in the acyl chain composition of the transferring lipid. Pyrenyl and radioactive ([3H]POPC) phospholipids were transferred with equal rates by the human transfer protein, suggesting that this protein has similar binding characteristics for pyrenyl and natural phospholipids. Spontaneous phospholipid transfer occurs by the aqueous diffusion of monomeric lipid where the rate is highly dependent on fatty acyl chain composition. In this study, no correlation between the rate of spontaneous transfer and protein-mediated transfer was found. The apparent Km values for R-HDL and low-density lipoprotein (LDL), when used as acceptors, were similar when based on the number of acceptor particles. The apparent Vmax for the bovine liver protein was identical for R-HDL and LDL but for the plasma protein Vmax was slightly higher for R-HDL. These results suggest that, like the bovine liver protein, the plasma protein functions as a phospholipid-binding carrier that exchanges phospholipids between membrane surfaces. The assay of lipid transfer proteins by pyrenyl-labeled lipids is faster and easier to perform than other current methods, which require separation of donor and acceptor particles, and is suitable for studies on the function and mechanism of action of lipid transfer proteins.  相似文献   

12.
In this study we demonstrate that apolipoprotein A-I determined the common size classes of discoidal particles formed with numerous phosphatidylcholines, and with ether analogs of phosphatidylcholines. We show furthermore, that the nature of the lipids dictates the distribution of particles among the different size classes. These experiments were performed with discoidal complexes containing various phospholipids (phosphatidylcholines with saturated and unsaturated fatty acid chains of different lengths and the ether analog of 1-palmitoyl-2-oleoylphosphatidylcholine), cholesterol, and human apolipoprotein A-I, prepared by the sodium cholate dialysis method, and fractionated by Bio-Gel A-5m gel-filtration chromatography. The complex preparations were analyzed in terms of their average composition, spectral properties of the apolipoprotein, and the dynamic behavior of the lipid domains. Nondenaturing gradient gel electrophoresis was used to analyze the size classes of particles present in the complex preparations. Starting with reaction mixtures containing around 100:1, phospholipid/apolipoprotein A-I molar ratios, complexes were isolated with molar ratios from 40:1 to 100:1. In most complexes apolipoprotein A-I had high levels of alpha-helical structure (65-77% alpha-helix), and tryptophan residues in a nonpolar environment. The lipid domains of complexes exhibited the dynamic behavior expected of the main phospholipid components. In the average size range from 90 to 100 A diameters, discrete particle classes with 80, 87, 102, 108, or 112 A Stokes diameters were observed for all the complexes containing different phospholipids. These discrete, recurring particle sizes are attributed to distinct apolipoprotein A-I conformations and variable lipid content.  相似文献   

13.
Human serum high density apolipoproteins were reassociated with three different lecithin species substituted with radioactively labelled photosensitive azido fatty acids, bis([3H]-16-azidopalmitoyl)-, bis([3H]12-azidooleoyl)- and bis([3H]18-azidolinoleoyl)glycerophosphocholine. The lipoprotein particles were reconstituted from a mixture of azido-labelled phosphatidylcholine and non-labelled dioleoylglycerophosphocholine (1:9). Excess lipid was separated from the homogeneous particles by Bio-Gel A-5m. The molecular weight, stoichiometry, fluorescence and circular dichroism of the reconstituted particles were determined before and after photoactivation with covalent cross-linking of the phospholipids with the apoproteins. The physical parameters of the reconstituted lipoproteins remained unperturbed by the cross-linking reaction between the generated nitrenes and apolipoprotein A-I and A-II. Thus the hydrophobic interactions of the phospholipid molecules with the apoproteins have been proved for the first time by a chemical method.  相似文献   

14.
The three-dimensional structure of the high density lipoprotein (HDL) component apolipoprotein (apo) A-I and the molecular basis for its protection against coronary artery disease are unknown. In terms of discoidal HDL particles, there has been a debate as to the orientation of the apoA-I alpha-helices around the disc edge. The "picket fence" model states that the alpha-helical repeats, separated by turns, are arranged parallel to the phospholipid acyl chains of the enclosed lipid bilayer. On the other hand, the "belt" model states that the helical segments run perpendicular to the acyl chains. To distinguish between these models, we used nitroxide spin labels present at various depths in the bilayer of reconstituted HDL (rHDL) to measure the position of Trp residues in single Trp mutants of human proapoA-I. Two mutants were studied; the first contained a Trp at position 108, which was located near the center of helix 4. The second contained a Trp at position 115, two turns along the same helix. The picket fence model predicts that these Trp residues should be at different depths in the bilayer, whereas the belt model predicts that they should be at similar depths. Different sized rHDL particles were produced that contained 2, 3, and >4 molecules of proapoA-I per complex. In each case, parallax analysis indicated that Trp-108 and Trp-115 were present at similar depths of about 6 A from the center of the bilayer, consistent with helix 4 being oriented perpendicular to the acyl chains (in agreement with the belt model). Similar experiments showed that control transmembrane peptides were oriented parallel to the acyl chains in vesicles, demonstrating that the method was capable of distinguishing between the two models. This study provides one of the first experimental measurements of the location of an apoA-I helix with respect to the bilayer edge.  相似文献   

15.
Lipoprotein particles reconstituted from the apolipoprotein AII (apo AII) component of human serum high density lipoprotein, phosphatidylcholine and lysophosphatidylcholine were covalently linked to the imidoester groups of a polystyrene residue. Apo AII was proteolytically digested with thermolysin after delipidation. The covalently bound peptides remaining at the resin were cleaved and separated by combined two-dimensional electrophoresis/chromatography. The peptides were isolated, hydrolyzed and their amino acid composition determined. They were assigned to the apo AII sequence. Since the imidoester groups on the surface of the resin carrier cannot react with buried lysine residues, this method gives strong chemical evidence for the spreading of the apo AII polypeptide chain over the surface of the lipoprotein particle, as far as the sequence carrying lysine residues between residue 22 and 55 of each symmetrical half is concerned.  相似文献   

16.
The 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli was treated with trypsin at pH 7.0 at 0 degrees C. Loss of the overall catalytic activity was accompanied by rapid cleavage of the lipoate succinyltransferase polypeptide chains, this apparent Mr falling from 50 000 to 36 000 as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. A slower shortening of the 2-oxoglutarate decarboxylase chains was also observed, whereas the lipoamide dehydrogenase chains were unaffected. The inactive trypsin-treated enzyme had lost the lipoic acid-containing regions of the lipoate succinyltransferase polypeptide chains, yet remained a highly assembled structure, as judged by gel filtration and electron microscopy. The lipoic acid-containing regions are therefore likely to be physically exposed in the complex, protruding from the structural core formed by the lipoate succinyltransferase component between the subunits of the other component enzymes. Proton nuclear magnetic resonance spectroscopy of the 2-oxoglutarate dehydrogenase complex revealed the existence of substantial regions of polypeptide chain with remarkable intramolecular mobility, most of which were retained after removal of the lipoic acid-containing regions by treatment of the complex with trypsin. By analogy with the comparably mobile regions of the pyruvate dehydrogenase complex of E. coli, it is likely that the highly mobile regions of polypeptide chain in the 2-oxoglutarate complex are in the lipoate succinyltransferase component and encompass the lipoyl-lysine residues. It is clear, however, that the mobility of this polypeptide chain is not restricted to the immediate vicinity of these residues.  相似文献   

17.
The lectin-mitogens from Hura crepitans and Robinia pseudacaccia have been purified by affinity chromatography and compared to that from Abrus precatorius by sodium lauryl sulfate gel electrophoresis. Robinia lectin is quite similar to that from Abrus precatorius in that it consists of two distinct polypeptide chains of 32,000 and 30,000 daltons but unlike abrus lectin the chains are not joined by disulphide bonds. Hura lectin is composed of only a single polypeptide chain which migrates identically with the heavy chain of the abrus lectin. This heavy chain is likely responsible for binding to galactose residues on cell surfaces. The lectin from Robinia pseudaccacia has been obtained in crystalline form.  相似文献   

18.
The membrane of vesicular stomatitis virus (VSV) contains two distinct pools of phosphatidylethanolamine molecules which reside in the inner and outer phospholipid monolayers, respectively. 36% of the total membrane phosphatidylethanolamine is found in the outer monolayer while 64% is found in the inner. The two pools of VSV phosphatidylethanolamine can be distinguished operationally by the fact that only outer phosphatidylethanolamine is reactive in intact virions with the membrane-impermeable reagent trinitrobenzenesulfonate (TNBS). We have made use of this property to separate inner from outer VSV phosphatidylethanolamine and to determine the fatty acyl chain compositions of the two phosphatidylethanolamine pools separately. The results show that compared to outer phosphatidylethanolamine, inner phosphatidylethanolamine molecules contain a significantly higher proportion of unsaturated fatty acyl chains. Furthermore, whereas the proportion of unsaturated fatty acyl chains was found to be quite similar at the 1 and 2 glycerol carbon atoms in inner phosphatidylethanolamine, a marked dissimilarity was observed in outer phosphatidylethanolamine; outer phosphatidylethanolamine was enriched in saturated fatty acyl chains at the 1 position and in unsaturated fatty acyl chains at the 2 position. The differential fatty acyl chain composition of inner compared to outer phosphatidylethanolamine indicates that rapid, random transmembrane migration (flip-flop) of phosphatidylethanolamine does not occur in the VSV membrane. The nature of the fatty acyl chain asymmetry observed in VSV phosphatidylethanolamine does not support the view that the identity of the fatty acyl chains can uniquely specify or determine which side of the membrane individual phosphatidylethanolamine molecules come to occupy. Although fatty acyl chain asymmetry and phosphatidylethanolamine asymmetry are correlated in VSV, no simple rules can be discerned which uniquely relate the two paramaters.  相似文献   

19.
Carney J  East JM  Lee AG 《Biophysical journal》2007,92(10):3556-3563
The transmembrane surface of a multi-helix membrane protein will be rough with cavities of various sizes between the transmembrane alpha-helices. Efficient solvation of the surface by the lipid molecules that surround the protein in a membrane requires that the lipid fatty acyl chains be able to enter the cavities. This possibility has been investigated using fluorescence quenching methods. Trp residues have been introduced into lipid-facing sites in the first transmembrane alpha-helix (M1) of the mechanosensitive channel of large-conductance MscL; lipid-facing residues at the N-terminal end of M1 are buried below the transmembrane surface of the protein. Fluorescence emission maxima for lipid-facing Trp residues in M1 vary with position in the bilayer comparably to those for Trp residues in the second transmembrane alpha-helix (M2) despite the fact that lipid-facing residues in M2 are on the surface of the protein. Fluorescence emission spectra for most Trp residues on the periplasmic sides of M1 and M2 fit well to a model proposing a trough-like variation of dielectric constant across the membrane, but the relationship between location and fluorescence emission maximum on the cytoplasmic side of the membrane is more complex. The fluorescence of Trp residues in M1 is quenched efficiently by phospholipids with bromine-containing fatty acyl chains, showing that the lipid chains must be able to enter the Trp-containing cavities on the surface of MscL, resulting in efficient solvation of the surface.  相似文献   

20.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号