共查询到20条相似文献,搜索用时 8 毫秒
1.
Functional interactions of lipids and proteins in rat intestinal microvillus membranes. 总被引:1,自引:0,他引:1
Interactions of lipids and proteins in isolated rat intestinal microvillus membranes were examined by studying the temperature dependence of enzyme activities and of D-glucose transport in relation to the membrane lipid thermotropic transition observed by fluorescence polarization (26 +/- 2 degrees C) and differential scanning calorimetry (23--39 degrees C). Two groups of activities were defined. Enzymes of the first group, comprising lactase, maltase, sucrase, leucine aminopeptidase, and gamma-glutamyl transpeptidase, all yielded a single slope on the Arrhenius plot in the range 10--40 degrees C and did not appear to experience functionally the effects of the lipid thermotropic transition. Each activity of the second group, comprising calcium- and magnesium-dependent adenosine triphosphatases, p-nitrophenylphosphatase, and D-glucose transport, showed a change in the slope of the Arrhenius plot in the range 25--30 degrees C, corresponding to the lower region of the lipid transition. The terms "extrinsic" and "intrinsic" activities could be applied to these groups. Delipidation of the particulate p-nitrophenylphosphatase removed the discontinuity in the Arrhenius plot. Subsequent relipidation with a variety of lipids restored a break point, but the temperature corresponded to the original discontinuity (25--29 degrees C) rather than to the phase transition temperature of the exogenous lipid added. 相似文献
2.
Cholesterol modulates alkaline phosphatase activity of rat intestinal microvillus membranes 总被引:4,自引:0,他引:4
T A Brasitus R Dahiya P K Dudeja B M Bissonnette 《The Journal of biological chemistry》1988,263(18):8592-8597
Experiments were conducted, using a nonspecific lipid transfer protein, to vary the cholesterol/phospholipid molar ratio of rat proximal small intestinal microvillus membranes in order to assess the possible role of cholesterol in modulating enzymatic activities of this plasma membrane. Cholesterol/phospholipid molar ratios from 0.71 to 1.30 were produced from a normal value of 1.05 by incubation with the transfer protein and an excess of either phosphatidylcholine or cholesterol/phosphatidylcholine liposomes for 60 min at 37 degrees C. Cholesterol loading or depletion of the membranes was accompanied by a decrease or increase, respectively, in their lipid fluidity, as assessed by steady-state fluorescence polarization techniques using the lipid-soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Increasing the cholesterol/phospholipid molar ratio also decreased alkaline phosphatase specific activity by approximately 20-30%, whereas decreasing this ratio increased this enzymatic activity by 20-30%. Sucrase, maltase, and lactase specific activities were not affected in these same preparations. Since the changes in alkaline phosphatase activity could be secondary to alterations in fluidity, cholesterol, or both, additional experiments were performed using benzyl alcohol, a known fluidizer. Benzyl alcohol (25 mM) restored the fluidity of cholesterol-enriched preparations to control levels, did not change the cholesterol/phospholipid molar ratio, and failed to alter alkaline phosphatase activity. These findings, therefore, indicate that alterations in the cholesterol content and cholesterol/phospholipid molar ratio of microvillus membranes can modulate alkaline phosphatase but not sucrase, maltase, or lactase activities. Moreover, membrane fluidity does not appear to be an important physiological regulator of these enzymatic activities. 相似文献
3.
Lysophosphatidylcholines can modulate the activity of the glucagon-stimulated adenylate cyclase from rat liver plasma membranes. 下载免费PDF全文
1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state. 相似文献
4.
Characterization of ATP-stimulated guanylate cyclase activation in rat lung membranes 总被引:6,自引:0,他引:6
C H Chang K P Kohse B Chang M Hirata B Jiang J E Douglas F Murad 《Biochimica et biophysica acta》1990,1052(1):159-165
Many of the effects of ANP are mediated through the elevation of cellular cGMP levels by the activation of particulate guanylate cyclase. While the stimulation of this enzyme is receptor-mediated, the molecular mechanism of activation remains unknown. In this study we present evidence that ATP as well as its analogues adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) and adenylylimidophosphate (AMPPNP) activates guanylate cyclase from rat lung membranes and markedly potentiates the effect of ANP on the enzyme. The order of potency is ATP gamma S greater than ATP greater than AMPPNP. The enzyme activation by adenine nucleotide and ANP together is much more than the sum of the individual activations, suggesting that ATP may be the physiological component essential for the ANP-stimulated guanylate cyclase activation. The ATP gamma S-stimulated guanylate cyclase activity diminishes in the presence of various kinds of detergents, suggesting either that the conformation of an ATP binding site in guanylate cyclase is altered by detergents or that protein-protein interaction may be involved in the activation of guanylate cyclase by ATP. Guanylate cyclase from rat lung membranes is poorly activated by ANP and/or ATP gamma S after removing the cytosolic and weakly membrane-associated proteins or factors by centrifugation. Pre-incubation of the membranes with ATP gamma S retains enzyme activation after membrane washing. These results suggest either that ATP gamma S stabilizes the conformation of nucleotide binding site in guanylate cyclase from denaturation by membrane washing, or that the stimulatory effect of ATP on guanylate cyclase activity may be mediated by accessory proteins or non-protein cofactors which are lost during membrane washing, but remain bound to membranes by ATP gamma S pretreatment. 相似文献
5.
Rat fat cell plasma membrane preparations were used to study the effect of Mn2+, Mg2+, Ca2+ on guanylate cyclase activity. Among these three cations, Mn2+ was the most effective in activating the enzyme; Mg2+ and Ca2+ were 23% and 10% respectively as effective as Mn2+ in activating the enzyme. Low concentrations of Ca2+ (1 microM) increased the rate of cGMP formation at MgGTP concentrations ranging from 0.3 to 2 mM. This effect was less at higher concentrations of Ca2+ and was independent of the presence of excess Mg2+. Ca2+ (100 microM) had only a marginal stimulatory effect on the MnGTP-dependent enzyme. 相似文献
6.
H R De Jonge 《FEBS letters》1975,53(2):237-242
7.
Helen R. Irving Lusisizwe Kwezi Janet Wheeler Chris Gehring 《Plant signaling & behavior》2012,7(2):201-204
Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles. 相似文献
8.
Nitric oxide can differentially modulate striatal neurotransmitter concentrations via soluble guanylate cyclase and peroxynitrite formation 总被引:13,自引:0,他引:13
In vivo microdialysis was used to investigate whether nitric oxide (NO) modulates striatal neurotransmitter release in the rat through inducing cyclic GMP formation via soluble guanylate cyclase or formation of peroxynitrite (ONOO(-)). When NO donors, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 1 mM) or (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1- ium-1, 2-diolate (NOC-18; 1 mM), were retrodialysed for 15 min, acetylcholine (ACh), serotonin (5-HT), glutamate (Glu), gamma-aminobutyric acid (GABA), and taurine levels were significantly increased, whereas those of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were decreased. Only effects on ACh, 5-HT, and GABA showed calcium dependency. Inhibition of soluble guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 100 and 200 microM) dose-dependently reduced NO donor-evoked increases in ACh, 5-HT, Glu, and GABA levels. Coperfusion of SNAP or NOC-18 with an ONOO(-) scavenger, L-cysteine (10 mM) resulted in enhanced concentrations of Glu and GABA. On the other hand, DA concentrations increased rather than decreased, and no reductions in DOPAC and 5-HIAA occurred. This increase in DA and the potentiation of Glu and GABA were calcium-dependent and prevented by ODQ. Similar to NO, infusions of ONOO(-) (10 or 100 microM) decreased DA, DOPAC, and 5-HIAA. Overall, these results demonstrate that NO increases ACh, 5-HT, Glu, and GABA levels primarily through a cyclic GMP-dependent mechanism. For DA, DOPAC, and 5-HIAA, effects are determined by levels of ONOO(-) stimulated by NO donors. When these are high, they effectively reduce extracellular concentrations through oxidation. When they are low, DA concentrations are increased in a cyclic GMP-dependent manner and may act to facilitate Glu and GABA release further. Thus, changes in brain levels of antioxidants, and the altered ability of NO to stimulate cyclic GMP formation during ageing, or neurodegenerative pathologies, may particularly impact on the functional consequences of NO on striatal dopaminergic and glutamatergic function. 相似文献
9.
J Levilliers F Lecot J Pairault 《Biochemical and biophysical research communications》1978,84(3):727-735
Guanylate cyclase activity in Triton X-100-treated plasma membranes exhibits sigmoidal profiles as a function of MgGTP, irrespective of the excess Mg2+(1) concentration. In contrast, at low excess Mn2+ (0.2 mM) the activity vs substrate (MnGTP) concentration profile corresponds to a michaelian behaviour. In addition the enzyme does not require similar excess Mn2+ and Mg2+ for optimal activity at various substrate concentrations. Moreover, low concentrations of Ca2+ are capable of stimulating guanylate cyclase activity with Mg2+ as the major divalent cation. 相似文献
10.
11.
Protoporphyrin IX activates the Mg dependent guanylate cyclase from rat liver plasma membranes 总被引:1,自引:0,他引:1
M L Lacombe C Eberentz-Lhomme 《Biochemical and biophysical research communications》1983,116(1):47-53
In the presence of Mg-GTP, the rat liver guanylate cyclase, in either intact membranes or trypsin solubilized form, was stimulated by protoporphyrin IX 6 to 10-fold. However, when Mn-GTP was the substrate, protoporphyrin IX activated the membrane-bound guanylate cyclase only 50%, in contrast to the marked activation reported for the cytosolic enzyme. Meso- and deuteroporphyrin IX, hematoporphyrin and coproporphyrin III also activated membrane guanylate cyclase while uroporphyrin III, and hemin had no effect. Basal, Mg2+-dependent activity exhibited two classes of catalytic sites with apparent Km values of 2 mM and 0.12 mM. Activation by protoporphyrin resulted in the disappearance of the low affinity sites. The activated enzyme exhibited Michaelis-Menten kinetics and no alteration in its requirement for excess Mg2+. These data indicate that, in the presence of Mg2+, a heme-like structure can interact with the membrane-bound guanylate cyclase and regulate its activity. 相似文献
12.
J D Sraer M Wolff F Delarue J Sraer 《Comptes rendus des séances de la Société de biologie et de ses filiales》1979,173(2):445-452
Isolated rat renal glomeruli contain an adenylate cyclase system and guanylate cyclase system. Adenylate cyclase was strikingly activated by purified parathyroid hormone, epinephrine, prostaglandin I2 and histamine. The demonstration of PTH activated adenylate cyclase in glomeruli raises the possibility of a role of this hormone in regulation of glomerular filtration rate. Guanylate cyclase was strikingly activated by CA2+, nitrate derivatives such as sodium nitroprusside. Its role remained still unknown. 相似文献
13.
D L Vesely 《Biochemical and biophysical research communications》1979,88(4):1244-1248
The hallucinogenic agents, phencylidine (Angel's Dust), TCP1 and their morpholine analogs enhanced the activity of guanylate cyclase {E.C.4.6.1.2}, the enzyme that catalyzes the production of guanosine 3′, 5′-monophosphate. This activation of guanylate cyclase by hencyclidine and TCP was observed over the concentration range of .00001 mM to 1 mM, while the morpholine analogs stimulated tha activity of guanylate cyclase in concentration of .0001 mM to 1 mM. 相似文献
14.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%. 相似文献
15.
The nucleotide cyclic GMP has been reported to be involved in cell proliferation and malignant transformation. Nitroso chemical carcinogens activate the enzyme guanylate cyclase (EC 4.6.1.2) which catalyzes the production of cyclic GMP. The present investigation demonstrates that compounds from other major classes of carcinogens including (1) alpha-halo ethers (chloromethyl methyl ether); (2) aromatic amines (benzidine and B-naphthylamine); (3) polycyclic hydrocarbons (1,2-benzanthracene and acridine); (4) azo dyes (p-dimethylaminoazobenzene), and (5) aflatoxins (B1, B2, G1, G2) produced a striking and significant inhibition of guanylate cyclase over a general concentration range of 0.5-13 mmol/1 in a variety of tissues. Some of the nitrosamides which increase guanylate cyclase activity, increase DNA synthesis whereas carcinogens which decrease guanylate cyclase activity inhibit DNA or RNA synthesis suggesting a relationship between cyclic GMP, DNA synthesis, and chemical carcinogenesis. 相似文献
16.
Rat intestinal microvillus membranes. Purification and biochemical characterization 总被引:34,自引:17,他引:34 下载免费PDF全文
1. A technique is described for the removal of subcellular contaminants from intact rat intestinal brush borders, and for the subsequent separation of a microvillus membrane fraction from a fibrillar residue. 2. Increments in invertase activity, microscopic homogeneity and low nucleic acid content indicate that the microvillus plasma membrane has been extensively purified. Multiple membrane preparations have been shown to be highly reproducible with respect to their invertase specific activity, cholesterol content and phospholipid content. Alkaline phosphatase, leucine aminopeptidase, Mg(2+)- and Ca(2+)-dependent adenosine triphosphatase and seven separate disaccharidases were shown to be predominantly confined to the membrane fraction. 3. The fibrillar fraction has been shown to contain approximately 30% of the total protein of purified brush borders, plus most of the residual nucleic acid contaminant. No evidence was found for the localization of any specific enzyme in this fraction. 相似文献
17.
Association of the atrial natriuretic factor receptor with guanylate cyclase in solubilized rat glomerular membranes 总被引:1,自引:0,他引:1
M Hamada I J Rondon E D Frohlich F E Cole 《Biochemical and biophysical research communications》1987,145(1):257-262
The elution profile of solubilized rat glomerular membranes from a gel filtration column showed two peaks of 125I-ANF (atrial natriuretic factor) binding (367 +/- 21, 156 +/- 12 KDa). Over 85% of the total binding for the extract was in the 367 KDa peak. Guanylate cyclase activity was correlated with 125I-ANF specific binding. ANF activation of guanylate cyclase was also observed. As observed previously with particulate membrane, Scatchard-analysis of ANF binding data with the solubilized extract was consistent with a two-site model. Both affinities (Kd's), 4 pM and 1 nM, are within the range of blood concentrations reported for ANF. These observations suggest that most rat glomerular ANF receptors are large molecular complexes coupled with guanylate cyclase in the 300-350 KDa size range. 相似文献
18.
Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes 总被引:6,自引:0,他引:6
P M Janssens C C De Jong A A Vink P J Van Haastert 《The Journal of biological chemistry》1989,264(8):4329-4335
We have characterized a magnesium-dependent guanylate cyclase in homogenates of Dictyostelium discoideum cells. 1) The enzyme shows an up to 4-fold higher cGMP synthesis in the presence of GTP analogues with half-maximal activation at about 1 microM guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or 100 microM guanosine 5'-(beta, gamma-imido)triphosphate; little or no stimulation was observed with GTP, guanosine mono- and diphosphates or with adenine nucleotides, with the exception of the ATP analogue adenosine 5'-(beta, gamma-imido)triphosphate. 2) Both basal and GTP gamma S-stimulated guanylate cyclase activity were rapidly lost from homogenates as was the ability of GTP gamma S to stimulate the enzyme after cell lysis. 3) Inclusion of 25 microM GTP gamma S during cell lysis reduced the KM for GTP from 340 to 85 microM and increased the Vmax from 120 to 255 pmol/min.mg protein, as assayed in homogenates 90 s after cell lysis. 4) Besides acting as an activator, GTP gamma S was also a substrate for the enzyme with a KM = 120 microM and a Vmax = 115 pmol/min.mg protein. 5) GTP gamma S-stimulated, Mg2+-dependent guanylate cyclase was inhibited by submicromolar concentrations of Ca2+ ions, and by inositol 1,4,5-trisphosphate in the absence of Ca2+ chelators. 6) Guanylate cyclase activity was detected in both supernatant and pellet fractions after 1 min centrifugation at 10,000 x g; however, only sedimentable enzyme was stimulated by GTP gamma S. We suggest that the Mg2+-dependent guanylate cyclase identified represents the enzyme that in intact cells is regulated via cell surface receptors, and we propose that guanine nucleotides are allosteric activators of this enzyme and that Ca2+ ions play a role in the maintenance of the enzyme in its basal state. 相似文献
19.
B. Amiranoff M. Laburthe C. Dupont G. Rosselin 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,544(3):474-481
A vasoactive intestinal peptide-sensitive adenylate cyclase in intestinal epithelial cell membranes was characterized. Stimulation of adenylate cyclase activity was a function of vasoactive intestinal peptide concentration over a range of 1 · 10−10−1 · 10−7 M and was increased six-times by a maximally stimulating concentration of vasoactive intestinal peptide. Half-maximal stimulation was observed with 4.1 ± 0.7 nM vasoactive intestinal peptide. Fluoride ion stimulated adenylate cyclase activity to a higher extent than did vasoactive intestinal peptide. Under standard assay conditions, basal, vasoactive inteetinal peptide- and fluoride-stimulated adenylate cyclase activities were proportional to time of incubation up to 15 min and to membrane concentration up to 60 μg protein per assay. The vasoactive intestinal peptide-sensitive enzyme required 5–10 mM Mg2+ and was inhibited by 1 · 10−5 M Ca2+. At sufficiently high concentrations, both ATP (3 mM) and Mg2+ (40 mM) inhibited the enzyme.Secretin also stimulated the adenylate cyclase activity from intestinal epithelial cell membranes but its effectiveness was 1/1000 that of vasoactive intestinal peptide. Prostaglandins E1 and E2 at 1 · 10−5 M induced a two-fold increase of cyclic AMP production. Vasoactive intestinal peptide was the most potent stimulator of adenylate cyclase activity, suggesting an important physiological role of this peptide in the cyclic AMP-dependent regulation of the intestinal epithelial cell function. 相似文献
20.
Highly purified particulate guanylate cyclase from rat lung: characterization and comparison with soluble guanylate cyclase 总被引:2,自引:0,他引:2
Scott A. Waldman John A. Lewicki Ling Y. Chang Ferid Murad 《Molecular and cellular biochemistry》1983,57(2):155-166
Guanylate cyclase was purified 1000-fold from washed rat lung particulate fractions to a final specific activity of 500 nmoles cyclic GMP produced/min/mg protein by a combination of detergent extraction and chromatography on concanavalin A-Sepharose, GTP-agarose, and blue agarose. Particulate guanylate cyclase has a molecular weight of 200 000 daltons, a Stokes radius of 48 A and a sedimentation coefficient of 9.4 while the soluble form has a molecular weight of 150 000 daltons, a Stokes radius of 44 A, and a sedimentation coefficient of 7.0. Whereas the particulate enzyme is a glycoprotein with a specific affinity for concanavalin A and wheat germ agglutinin, the soluble form of guanylate cyclase did not bind to these lectins. Purified particulate guanylate cyclase did not cross-react with a number of monoclonal antibodies generated to the soluble enzyme. While both forms of the enzyme could be regulated by the formation of mixed disulfides, the particulate enzyme was relatively insensitive to inhibition by cystine. With GTP as substrate both forms of the enzyme demonstrated typical kinetics, and with GTP analogues negative cooperativity was observed with both enzyme forms. These data support the suggestion that the two forms of guanylate cyclase possess similar catalytic sites, although their remaining structure is divergent, resulting in differences in subcellular distribution, physical characteristics, and antigenicity. 相似文献