首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10-12 month lactation period, female fur seals suckle pups on shore for 2-3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 microm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (alphaS2-casein, beta-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell-matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.  相似文献   

2.
Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently.  相似文献   

3.
4.
This study exploited the unusual lactation cycle of the tammar wallaby (Macropus eugenii) to characterise milk composition during acute involution, a time when the mammary gland is subjected to increased risk of infection. In early-lactation, tammar milk contains elevated levels of complex oligosaccharides and low protein and lipid content. Later in lactation, protein and lipid concentrations increase significantly, whereas carbohydrate content is reduced dramatically and changes to monosaccharides. Following initiation of involution at early-lactation, the carbohydrate concentration greatly decreased, while lipid and protein concentrations were elevated, suggesting that complex oligosaccharides are the major osmole in milk at this time. In contrast, involution at late lactation, when carbohydrate concentration was very low, led to an increase in the lipid concentration, but the concentration of protein was not significantly altered. This indicates that protein synthesis during acute involution at late lactation in the tammar may be down-regulated much more rapidly than during early-lactation. Analysis of milk at day 3 after the onset of involution at early-lactation identified a number of potential antimicrobials secreted at high concentrations, including lysozyme, dermcidin, polymeric immunoglobulin receptor and fragments of beta-lactoglobulin. These proteins may protect the mammary gland by minimising the risk of potential infection during involution.  相似文献   

5.
6.
Specific changes in milk composition during lactation in the tammar wallaby (Macropus eugenii) were correlated with the ages of the developing pouch young (PY). The present experiment was designed to test the hypothesis that the sucking pattern of the PY determines the course of mammary development in the tammar wallaby. To test this hypothesis, groups of 60-day-old PY were fostered repeatedly onto one group of host mothers so that a constant sucking stimulus on the mammary gland was maintained for 56 days to allow the lactational stage to progress 42 days ahead of the age of the young. Analysis of the milk in fostered and control groups showed the timing of changes in the concentration of protein and carbohydrate were essentially unaffected by altering the sucking regime. The only change in milk protein secretion was a small delay in the timing of down-regulation of the secretion of whey acidic protein and early lactation protein in the host tammars. In addition, the rates of growth and development of the foster PY were significantly increased relative to those of the control PY because of ingesting more milk with a higher energy content and different composition than normal for their age. The present study demonstrates that the lactating tammar wallaby regulates both milk composition and the rate of milk production and that these determine the rates of PY growth and development, irrespective of the age of the PY.  相似文献   

7.
The regulation of β-1,3 galactosyltransferase (3βGalT) and β-1,4 galactosyltransferase enzymatic (4βGalT) activities in the mammary gland of the tammar wallaby (Macropus eugenii) have been characterised. These two β-galactosyltransferases are active at different times during the lactation cycle and play a central role in regulating the carbohydrate composition in tammar milk, which changes progressively throughout lactation to assist the physiological development of the altrical young. The 4βGalT activity was present at parturition and increased 3-fold by day 10 of lactation (d10L), whereas 3βGalT activity was barely detectable at day d5L and then increased 6-fold by d10L. This increase in activity of both enzymes was sucking dependent. While 3βGalT activity was not observed in the mammary gland prior to d7L, this activity was found in mammary explants from late pregnant tammar cultured with insulin, hydrocortisone and prolactin (IFP) and was further stimulated by the addition of tri-iodothyronine (T) and 17β-oestradiol (E). The activity of 4βGalT in these explants was stimulated maximally with IFP. These data suggest the temporal activity of both 3βGalT and 4βGalT is most likely regulated by both endocrine stimuli and factors intrinsic to the mammary gland.  相似文献   

8.

Background

Lactation is a key aspect of mammalian evolution for adaptation of various reproductive strategies along different mammalian lineages. Marsupials, such as tammar wallaby, adopted a short gestation and a relatively long lactation cycle, the newborn is immature at birth and significant development occurs postnatally during lactation. Continuous changes of tammar milk composition may contribute to development and immune protection of pouch young. Here, in order to address the putative contribution of newly identified secretory milk miRNA in these processes, high throughput sequencing of miRNAs collected from tammar milk at different time points of lactation was conducted. A comparative analysis was performed to find distribution of miRNA in milk and blood serum of lactating wallaby.

Results

Results showed that high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway. In contrast, highly expressed milk miRNAs could be detected at significantly higher levels in neonate blood serum in comparison to adult blood, suggesting milk miRNAs may be absorbed through the gut of the young.

Conclusion

The function of miRNA in mammary gland development and secretory activity has been proposed, but results from the current study also support a differential role of milk miRNA in regulation of development in the pouch young, revealing a new potential molecular communication between mother and young during mammalian lactation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1012) contains supplementary material, which is available to authorized users.  相似文献   

9.
As one of several biologically active compounds in milk, glycoproteins have been indicated to be involved in the protection of newborns from bacterial infection. As much of the physical and immune development of the tammar wallaby (Macropus eugenii) young occurs during the early phases of lactation and not in utero, the tammar is a model species for the characterization of potential developmental support agents provided by maternal milk. In the present study, the N- and O-linked glycans from tammar wallaby milk glycoproteins from six individuals at different lactation time points were subjected to glycomics analyses using porous graphitized carbon liquid chromatography electrospray ionization mass spectrometry. Structural characterization identified a diverse range of glycan structures on wallaby milk glycoproteins including sialylated, sulphated, core fucosylated and O-fucosylated structures. 30 % of N-linked structures contained a core (α1-6) fucose. Several of these structures may play roles in development, and exhibit statistically significant temporal changes over the lactation period. The N-glycome was found to contain structures with NeuGc residues, while in contrast the O-glycome did not. O-fucosylated structures were identified in the early stages of lactation indicating a potential role in the early stages of development of the pouch young. Overall the results suggest that wallaby milk contains structures known to have developmental and immunological significance in human milk and reproduction in other animals, highlighting the importance of glycoproteins in milk.  相似文献   

10.
The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.  相似文献   

11.
The regulation of beta-1,3 galactosyltransferase (3betaGalT) and beta-1,4 galactosyltransferase enzymatic (4betaGalT) activities in the mammary gland of the tammar wallaby (Macropus eugenii) have been characterised. These two beta-galactosyltransferases are active at different times during the lactation cycle and play a central role in regulating the carbohydrate composition in tammar milk, which changes progressively throughout lactation to assist the physiological development of the altrical young. The 4betaGalT activity was present at parturition and increased 3-fold by day 10 of lactation (d10L), whereas 3betaGalT activity was barely detectable at day d5L and then increased 6-fold by d10L. This increase in activity of both enzymes was sucking dependent. While 3betaGalT activity was not observed in the mammary gland prior to d7L, this activity was found in mammary explants from late pregnant tammar cultured with insulin, hydrocortisone and prolactin (IFP) and was further stimulated by the addition of tri-iodothyronine (T) and 17beta-oestradiol (E). The activity of 4betaGalT in these explants was stimulated maximally with IFP. These data suggest the temporal activity of both 3betaGalT and 4betaGalT is most likely regulated by both endocrine stimuli and factors intrinsic to the mammary gland.  相似文献   

12.
A major whey protein which appears in milk from the tammar wallaby (Macropus eugenii) only during the second half of lactation (late lactation protein-A, LLP-A) was purified to apparent homogeneity by ion-exchange chromatography and gel filtration. An Mr of 21,600 +/- 2000 was calculated from its amino acid composition. A computer-based comparison of the sequence of the first 69 amino acid residues with the Atlas of Protein Sequence data base showed no significant homology with known proteins. Antiserum to LLP-A was prepared in rabbits, and single radial immunodiffusion was used to measure the amounts of LLP-A in milk during the first 40 weeks of lactation. LLP-A was first detected at 26 weeks; thereafter its concentration increased abruptly, to reach a maximum of 26 g/l at approx. 36 weeks of lactation. Explants prepared from mammary gland biopsies at 20 and 35 weeks of lactation were exposed to [3H]amino acids for 8 h; immunoprecipitation of tissue extracts showed that, whereas the rate of casein synthesis was the same at both stages of lactation, LLP-A was synthesized only by the 35-week mammary gland.  相似文献   

13.
Marsupials, such as the tammar wallaby (Macropus eugenii), have adopted a reproductive strategy that is very different to eutherians. Both the rate of production and the composition of milk changes progressively during the lactation cycle to meet the nutritional demands of an altricial young. The tammar therefore provides a valuable model to study changes in milk composition, and in particular the genes that code for proteins secreted in the milk, to more accurately assess the role of gene products regulating either development of the young or mammary function.  相似文献   

14.
We report the successful use of 2D electrophoresis, MALDI MS/MS and chemical derivatisation protocols of guanidination and sulfonation to identify over 100 protein spots present in early marsupial milk (tammar wallaby) at 40 days lactation, where a limited translated genomic database is publicly available for cross species matching and protein identification. Of the proteins identified, 25 matched to 6 existing marsupial milk protein sequences in the NCBI database; another 6 were identified with high confidence to other mammals and have not previously been identified in marsupial milk. By using chemical derivatisation, the reliable identification of a further 81 proteins was achieved. The identified proteins could be grouped into three main functional categories — transport, nutrition and immune protection. All these proteins play a potential role in determining growth and immunological protection of the highly altricial marsupial young at 40 days after birth.  相似文献   

15.
Folate is crucial for various cellular functions. Several transport mechanisms allow folate to enter the intracellular compartment with folate receptor-α being the major high-affinity receptor. Rare genetic variations in exons of the FR-α gene, FOLR1, were recently shown to cause severe folate deficiency accompanied by neurological and other disturbances. So far, similar effects by genetic variation in noncoding parts of the FOLR1 gene have not been identified. The aim of our study was to determine biochemically the haplotype structure of two linked polymorphisms in the FOLR1 gene, 1816delC and 1841G>A, the prevalences of the mutated alleles across Eurasia, and their possible effects on physiological folate levels in vivo. For this purpose we employed allele-specific PCR and Pyrosequencing technology and performed genotyping in 738 subjects from Spain, 387 from Sweden, 952 from Estonia, and 47 from Korea. We demonstrate the presence of an ancient double-mutated haplotype 1816delC–1841A in the FOLR1 gene, with the prevalence of the mutated allele being highest among Koreans (q = 0.074), lower in Estonians (q = 0.017), Spaniards (q = 0.0061), and the lowest among Swedes (q = 0.0026). Erythrocyte folate levels were studied in the Spanish population sample, where subjects carrying the double-mutated FOLR1 haplotype had significantly reduced levels by 27% (P = 0.039), adjusted for serum vitamin B12 levels and MTHFR 677C>T genotype, while the mean serum folate levels were only 20% lower among the carriers (P = 0.11). Plasma homocysteine and cobalamin levels did not differ. Thus, we have demonstrated by molecular haplotyping an ancient double-mutated haplotype 1816delC–1841A in the FOLR1 gene, spread over the whole Eurasian continent, which may be of functional importance for uptake of folate in red blood cells.  相似文献   

16.
Pten作为抑癌基因,参与调控细胞生长、粘附、凋亡以及其它细胞活动.目前,国内外关于Pten在奶牛乳腺发育过程中表达及调节的研究鲜有报道.为了揭示Pten的表达与奶牛乳腺发育与泌乳之间的关系,本研究应用qRT-PCR技术检测Pten在不同泌乳时期和不同乳品质的奶牛乳腺组织中的表达差异,进而应用脂质体转染方法,通过siRNA介导的RNA干扰技术改变Pten基因在奶牛乳腺上皮细胞中的表达量,CASY法检测细胞活力,用ELISA试剂盒检测细胞分泌β-酪蛋白的含量,采用qRT-PCR、Western 印迹等技术检测Pten对奶牛乳腺上皮细胞中乳蛋白相关信号通路基因表达的影响.结果显示,泌乳期高乳品质奶牛乳腺组织中Pten表达水平显著低于泌乳期低乳品质及干乳期奶牛;Pten基因沉寂后,细胞活力提高,β-酪蛋白质量浓度增加,CSN2、AKT、MTOR、STAT5表达量增加.研究表明,Pten可通过抑制细胞活力和乳蛋白分泌而影响泌乳.  相似文献   

17.
The β(1,4)-galactosyltransferase-I gene (β4galt1) encodes the catalytic part of the enzyme lactose synthase, responsible of lactose synthesis in the mammary gland. The complete coding region of the gene was screened for the presence of allelic variation among a sample of 1,200 Iranian Holstein cows, using PCR-SSCP technique followed by sequencing. Nine polymorphic nucleotide sites were identified-one in exons I and VI, two in exons II and III, and three in exon V. Altogether 18 different genotypes were assigned. Statistical analysis showed that the genotypes of Β4GALT1 significantly affect milk, lactose, protein and total solid productions in both the first and second lactation (P < 0.001). Variance component analysis considering restricted maximum likelihood showed that the major factor making differences in milk, lactose, protein and total solid productions among the studied cow is the β4galt1 genotype. We concluded that the β4galt1 gene is potentially associated with milk production traits in dairy cows and should be considered for further studies on genetics of the milk production traits.  相似文献   

18.
Marsupials provide a suitable alternative model to studying mammary gland involution. They have evolved a different reproductive strategy from eutherians, giving birth to an altricial young and secreting milk that changes in composition during lactation. In this study, we used a marsupial-specific EST microarray to identify 47 up-regulated genes during mammary gland involution in the tammar wallaby (Macropus eugenii). These include the pro-apoptotic tumour necrosis factor receptor superfamily 21 (TNFRSF21) gene, whose expression in the mammary gland has not previously been reported. Genes encoding putative novel milk proteins which may protect the mammary gland from infection were also found to be up-regulated, such as amiloride binding protein 1 (ABP1), complement component 1QB (C1QB), complement component 4A (C4A) and colony stimulating factor 2 receptor β (CSF2Rβ). Our results show that the marsupial reproductive strategy was successfully exploited to identify genes and putative novel milk proteins implicated in mammary gland involution.  相似文献   

19.
Summary Relationships between basal and fed metabolic rates and whole-body protein turnover rates were examined in three species of wallabies, the red-necked pademelon (Thylogale thetis), parma wallaby (Macropus parma) and tammar wallaby (M. eugenii).There were no significant differences among wallaby species in basal metabolic rate (BMR) which was 30% below eutherian mammals. However, the fed metabolic rate of the tammar was lower than that of the other two species (P<0.05), as was the protein turnover rate (P<0.01) which is consistent with its lower voluntary feed intake and with its lower maintenance nitrogen requirement.Protein turnover rates in the wallabies were 23–47% lower than in eutherian mammals. Similarly, protein synthesis made a lower contribution to fed metabolic rates in the wallabies (7–8%) than in eutherians (17–25%).Thus, compared with several eutherian species, macropodid marsupials have low rates of both energy and protein metabolism, but within the macropodids there is not necessarily a close link between basal metabolic rate and whole-body protein turnover.Abbreviations BMR basal metabolic rate - DEE daily energy expenditure - EE energy expenditure - LSD least significant difference - RQ respiratory quotient  相似文献   

20.
Lipids in tammar milk are predominantly triacylglycerols, and the fatty acid composition varies during the lactation cycle. Little is known about the regulation of their synthesis. This study investigates the endocrine regulation of lipid synthesis in mammary explants from pregnant tammars. Treatment of mammary explants with insulin resulted in a high level of lipid synthesis, but the lipids accumulated in the cytosol. Culture with prolactin resulted in a small increase in lipid synthesis, but electron microscopy showed lipid globules were synthesized in the mammary epithelial cells and secreted into the lumen. Culture with both insulin and prolactin demonstrated elevated levels of synthesis and secretion of lipid. Analysis of the type of fatty acids synthesized in these mammary explants showed that the initiation of synthesis of C16:0, which also occurs in the first week of lactation, could be reproduced in the pregnant explants cultured with prolactin alone. However, treatment of mammary explants with hydrocortisone did not show a significant effect on lipid synthesis, secretion or the fatty acid synthesized. These results provide new information identifying the role of insulin and prolactin in regulating milk lipid synthesis and secretion in the tammar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号