首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have shown that one manganous ion binds tightly to bovine hexokinase, with a Kd = 25 +/- 4 microM. The characteristic proton relaxation rate (PRR) enhancement of this binary complex (epsilon b) is 3.5 at 9 MHz and 23 degrees C [Jarori, G.K. Kasturi, S.R., and Kenkare, U.W. (1981) Arch. Biochem. Biophys. 211, 258-268]. On the basis of PRR enhancement patterns, observed on the addition of nucleotides ATP and ADP to this E X Mn binary complex, we now show the formation of a nucleotide-bridge ternary complex, enzyme X nucleotide X Mn. Addition of glucose 6-phosphate to enzyme X ATP X Mn, results in a competitive displacement of ATP Mn from the enzyme. However, a quaternary complex E X ADP X Mn X Glc-6-P appears to be formed when both the products are present. Beta, gamma-Bidentate Cr(III)ATP has been used to elucidate the role of direct binding of Mn(II) in catalysis, and the stoichiometry of metal-ion interaction with the enzyme in the presence of nucleotide. Bidentate Cr(III)ATP serves as a substrate for brain hexokinase without any additional requirement for a divalent cation. However, electron-spin resonance studies on the binding of Mn(II) to the enzyme in the presence of Cr(III)ATP suggest that, in the presence of nucleotide, two metal ions interact with hexokinase, one binding directly to the enzyme and the second interacting via the nucleotide bridge. It is this latter one which participates in catalysis. Experiments carried out with hexokinase spin-labeled with 3-(2-iodo-acetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl clearly showed that the direct-binding Mn site on the enzyme is distinctly located from its ATP Mn binding site.  相似文献   

2.
A glucose analog, N-(bromoacetyl)-D-glucosamine (GlcNBrAc), previously used to label the glucose binding sites of rat muscle Type II and bovine brain Type I hexokinases, also inactivates rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) with pseudo-first-order kinetics. Inactivation occurs predominantly via a "specific" pathway involving formation of a complex between hexokinase and GlcNBrAc, but significant nonspecific (i.e., without prior complex formation) inactivation also occurs, and equations to describe this behavior are derived. Inactivation is dependent on deprotonation of a residue with an alkaline pKa, consistent with the modified residue being a sulfhydryl group as reported to be the case with the hexokinase of bovine brain. The affinity label modifies three residues (per molecule of enzyme) at indistinguishable rates, but only one of these residues appears to be critical for activity. Amino acid analysis of the modified enzyme indicates derivatization of three cysteine residues; there was no indication of modification of other residues potentially reactive with haloacetyl derivatives. Kinetic analysis and effects of protective ligands were consistent with location of the critical sulfhydryl at the glucose binding site. Peptide mapping techniques permitted localization of the critical residue, and thus the glucose binding site, in a 40-kDa domain at the C-terminus of the enzyme. This is the same domain recently shown to include the ATP binding site. Thus, catalytic function is assigned to the C-terminal domain of rat brain hexokinase.  相似文献   

3.
Type I hexokinase (ATP:d-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (<10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

4.
Type I hexokinase (ATP:D-hexose 6-phospotransferase, EC 2.7.1.1) of porcine heart exists in two chromatographically distinct forms. These do not differ significantly in size, electrophoretic mobility at pH 8.6 or kinetic properties. Both forms obey a sequential mechanism and are potently inhibited by glucose 6-phosphate. In contrast to observations of type I hexokinase from brain, inhibition by glucose 6-phosphate is not relieved by inorganic phosphate. Under most conditions, low concentrations of phosphate (less than 10 mM) have little effect on the kinetic behaviour of the enzyme but at higher concentrations this ligand is an inhibitor. Mannose 6-phosphate inhibits in a manner analogous to glucose 6-phosphate but the Ki is much greater. In view of the similarity of the kinetic parameters governing phosphorylation of mannose and glucose, this difference in affinity for the inhibitor site is seen as consistent with the existence of a separate regulatory site on the enzyme. MgADP inhibits hexokinase but behaves as a normal product inhibitor and inhibition is competitive with respect to MgATP and non-competitive with respect to glucose.  相似文献   

5.
Bovine brain hexokinase enhances the effect of Mn(II) on the longitudinal relaxation rate of water protons. Direct interaction of Mn(II) with the enzyme has been studied using electron spin resonance and proton relaxation rate enhancement methods. The results indicate that brain hexokinase has 1.05 ± 0.13 tight binding sites and 7 ± 2 weak binding sites with a dissociation constant, KD = 25 ± 4 μM and KD = 1050 ± 290 μM, respectively, at pH 8.0, 23 °C. The characteristic enhancement ?b) for hexokinase-Mn(II) complex evaluated from proton relaxation rate enhancement studies, gave ?b = 3.5 ± 0.4 for tight binding sites and an average ?b = 2.3 ± 0.5 per site for weak binding sites at 9 MHZ. The dissociation constant of Mn(II) for tight binding sites on the enzyme exhibits strong temperature dependence. In the low-temperature region (5–12 °C) brain hexokinase probably undergoes a conformational change. Frequency dependence of the normalized relaxation rate for bound water at various temperatures has shown that the number of exchangeable water molecules left in the first coordination sphere of bound Mn(II) is about one at 30 °C and about two at 18 °C. Binding of glucose 6-phosphate to hexokinase results in large-line broadening of the resonances of anomeric protons of the sugar. However, no such effect was observed in the case of glucose binding. These results suggest different modes of interaction of these two sugars to hexokinase. Line broadening of the C-(1) hydrogen resonances of glucose caused by Mn(II) in the presence of hexokinase suggests the proximity of the Mn(II) binding site to that of glucose. A lower limit of 1330 ± 170 s?1 for the rate of dissociation of glucose from enzyme-Mn(II)-glucose complex has been obtained from these studies.  相似文献   

6.
The binding of glucose to bovine brain hexokinase, isozyme I, exhibited one binding site per 100,000 molecular weight. Glucose-6-P binding was examined in the absence and presence of ATP. ATP and glucose-6-P were shown to compete for the same binding site on the enzyme. A model was proposed to account for these findings and the previously reported data that glucose-6-P and Pi exhibit mutually exclusive, non-cooperative binding to the enzyme. The model shows that brain hexokinase exists in two rapidly interconvertible states, either with or without Pi and that glucose-6-P binding to the phosphate associated enzyme form is relatively very poor. This proposal has been tested kinetically and the data appear to support the suggested model.  相似文献   

7.
The complete amino acid sequence of the catalytic domain of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been deduced from the nucleotide sequence of cloned cDNA. Extensive similarity in sequence, taken to indicate similarity in secondary and tertiary structure, is seen between the mammalian enzyme and yeast hexokinase isozymes A and B. All residues critical for binding glucose to the yeast enzyme are conserved in brain hexokinase. A location for the substrate ATP binding site is proposed based on relation of structural features in the yeast enzyme to characteristics commonly observed in other nucleotide binding enzymes; sequences in regions proposed to be important for binding of ATP to the yeast enzyme are highly conserved in brain hexokinase.  相似文献   

8.
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.  相似文献   

9.
Inhibition of bovine brain hexokinase by its product, glucose 6-phosphate, is considered to be a major regulatory step in controlling the glycolytic flux in the brain. Investigations on the molecular basis of this regulation, i.e. allosteric or product inhibition, have led to various proposals. Here, we attempt to resolve this issue by ascertaining the location of the binding sites for glucose and glucose 6-phosphate on the enzyme with respect to a divalent-cation-binding site characterized previously [Jarori, G. K., Kasturi, S. R. & Kenkare, U. W. (1981) Arch. Biochem. Biophys. 211, 258-268]. The paramagnetic effect of enzyme-bound Mn(II) on the spin-lattice relaxation rates (T-1(1] of ligand nuclei (1H and 31P) in E.Mn(II).Glc and E.Mn(II).Glc6P complexes have been measured. The paramagnetic effect of Mn(II) on the proton relaxation rates of C1-H alpha, C1-H beta and C2-H beta of glucose in the E.Mn(II).Glc complex was measured at 270 MHz and 500 MHz. The temperature dependence of these rates was also studied in the range of 5-30 degrees C at 500 MHz. The ligand nuclear relaxation rates in E.Mn(II).Glc are field-dependent and the Arrhenius plot yields an activation energy (delta E) of 16.7-20.9 kJ/mol. Similar measurements have also been carried out on C1-H alpha, C1-H beta and C6-31P at 270 MHz (1H) and 202.5 MHz (31P) for the E.Mn(II).Glc6P complex. The temperature dependence of 31P relaxation rates in this complex was measured in the range 5-30 degrees C, which yielded delta E = 9.2 kJ/mol. The electron-nuclear dipolar correlation time (tau c), determined from the field-dependent measurements of proton relaxation rates in the E.Mn(II).Glc complex, is 0.22-1.27 ns. The distances determined between Mn(II) and C1-H of glucose and glucose 6-phosphate are approximately 1.1 nm and approximately 0.8 nm, respectively. These data, considered together with our recent results [Mehta, A., Jarori, G. K. & Kenkare, U. W. (1988) J. Biol. Chem. 263, 15492-15498], suggest that glucose and glucose 6-phosphate may bind to very nearly the same region of the enzyme. The structure of the binary Glc6P.Mn(II) complex has also been determined. The phosphoryl group of the sugar phosphate forms a first co-ordination complex with the cation. However, on the enzyme, the phosphoryl group is located at a distance of approximately 0.5-0.6 nm from the cation.  相似文献   

10.
19 F NMR spectroscopy have been applied to evaluate metal ion binding by the representative PvuII endonuclease in the absence of substrate. In separate experiments, ITC data demonstrate that PvuII endonuclease binds 2.16 Mn(II) ions and 2.05 Ca(II) metal ions in each monomer active site with K d values of  ≈ 1 mM. While neither calorimetry nor protein NMR spectroscopy is directly sensitive to Mg(II) binding to the enzyme, Mn(II) competes with Mg(II) for common sites(s) on PvuII endonuclease. Substitution of the conserved active site carboxylate Glu68 with Ala resulted in a loss of affinity for both equivalents of both Ca(II) and Mn(II). Interestingly, the active site mutant D58A retained an affinity for Mn(II) with K d  ≈ 2 mM. Mn(II) paramagnetic broadening in 19F spectra of wild-type and mutant 3-fluorotyrosine PvuII endonucleases are consistent with ITC results. Chemical shift analysis of 3-fluorotyrosine mutant enzymes is consistent with a perturbed conformation for D58A. Therefore, free PvuII endonuclease binds metal ions, and metal ion binding can precede DNA binding. Further, while Glu68 is critical to metal ion binding, Asp58 does not appear to be critical to the binding of at least one metal ion and appears to also have a role in structure. These findings provide impetus for exploring the roles of multiple metal ions in the structure and function of this representative endonuclease. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

11.
P1-(adenosine-5')-P3-(glucose-6)-triphosphate (Ap3glucose) is a linear uncompetitive inhibitor vs glucose and a linear mixed inhibitor vs ATP of brain hexokinase, an inhibition pattern inconsistent with binding of Ap3glucose to the catalytic site when either the rapid equilibrium random or ordered sequential mechanism, which have been proposed for this enzyme, is considered. It is concluded that inhibition results from binding to a discrete regulatory site. The apparent ability of the regulatory site to accommodate both hexose and nucleotide moieties is consistent with suggestions by previous investigators that the regulatory site on mammalian hexokinases may have evolved from what was originally a catalytic site.  相似文献   

12.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

13.
L P Solheim  H J Fromm 《Biochemistry》1983,22(9):2234-2239
Kinetic studies were used to investigate the mode of brain hexokinase (EC 2.7.1.1, ATP:D-hexose 6-phosphotransferase) regulation by glucose 6-phosphate (glucose-6-P), ADP, and inorganic phosphate (Pi). A model for regulation of brain hexokinase by glucose-6-P and Pi had been proposed from initial-rate studies and binding experiments [Ellison, W. R., Lueck, J. D., & Fromm, H. J. (1975) J. Biol. Chem. 250, 1864-1871]. The results of the present investigation demonstrate that Pi is an activator of the brain hexokinase reaction when the reaction is studied in the nonphysiological direction. Evidence is presented which indicates that the back-reaction substrates and Pi can bind the enzyme simultaneously, and the suggestion is made that Pi binds to an allosteric site on the enzyme. These findings are in marked contrast to results obtained in the absence of ADP which convincingly demonstrate that glucose-6-P and Pi are mutually exclusive binding ligands for brain hexokinase. The kinetic data can be reconciled with the model for hexokinase regulation within the context of the well-established kinetic mechanism for brain hexokinase.  相似文献   

14.
In an attempt to distinguish between the interaction of GTP and ATP with tubulin dimer, high-resolution 1H- and 31P-NMR experiments have been carried out on the nucleotides in the presence of tubulin. The location of the ATP binding sites on the protein in relation to the GTP sites is still not clear. Using NMR spectroscopy, we have tried to address this question. Evidence for the existence of a site labelled as X-site and another site (labelled as L-site for both the nucleotides on tubulin has been obtained. It is suggested that this X-site is possibly the putative E-site. In order to gain further insight into the nature of these sites, the Mg(II at the N-site has been replaced by Mn(II and the paramagnetic effect of Mn(II on the linewidth of the proton resonances of tubulin-bound ATP and GTP has been studied. The results show that the L-site nucleotide is closer to the N-site metal ion compared to the X-site nucleotide. On the basis of these results, it is suggested that the L-site of ATP is distinct from the L-site of GTP while the X-site of both the nucleotides seems to be same. By using the paramagnetic effect of the metal ion, Mn(II), at the N-site on the relaxation rates of tubulin-bound ATP at L-site, distances of the protons of the base, sugar and phosphorous nuclei of the phosphorous moiety of ATP, from the N-site metal ion have been mapped. The base protons are 2 0.7–1 nm distant from the N-site metal ion, while the protons of the sugar are 2 0.8-1 nm from this metal ion site. On the other hand, the phosphorous nuclei of the phosphate groups are somewhat nearer (2 0.4–0.5 nm from the N-site metal ion.  相似文献   

15.
J L Kofron  D E Ash  G H Reed 《Biochemistry》1988,27(13):4781-4787
Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate,phosphate dikinase (Ep) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme [Michaels, G., Milner, Y., & Reed, G.H. (1975) Biochemistry 14, 3213-3219]. Superhyperfine coupling between the unpaired electrons of Mn(II) and ligands specifically labeled with 17O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the Ep-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction.  相似文献   

16.
V D Redkar  U W Kenkare 《Biochemistry》1975,14(21):4704-4712
Inactivation of bovine brain mitochondrial hexokinase by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a sulfhydryl specific reagent, has been investigated. The study shows that the inactivation of the enzyme by DTNB proceeds by way of prior binding of the reagent to the enzyme and involves the reaction of 1 mol of DTNB with a mol of enzyme. At stoichiometric levels of DTNB, the inactivation of the enzyme is accompanied by the formation of a disulfide bond. But it is not clear whether the disulfide bond or the mixed disulfide intermediate formed prior to it causes inactivation. On the basis of considerable protection afforded by glucose against this inactivation it is tentatively concluded that the sulfhydryl residues involved in this inactivation are at the glucose binding site of the enzyme, although other possibilities are not ruled out. An analysis of effects of various substrates and inhibitors on the kinetics of inactivation and sulfhydryl modification by DTNB has led to the proposal that the binding of substrates to the enzyme is interdependent and that glucose and glucose 6-phosphate produce slow conformational changes in the enzyme. Protective effects by ligands have been employed to calculate their dissociation constant with respect to the enzyme. The data also indicate that glucose 6-phosphate and inorganic phosphate share the same locus on the enzyme as the gamma phosphate of ATP and that nucleotides ATP and ADP bind to the enzyme in the absence of Mg2+.  相似文献   

17.
Based on the lack of correlation between the ability of various hexoses to serve as substrate and the ability of the corresponding hexose 6-phosphates to inhibit brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), R. K. Crane and A. Sols (1954, J. Biol. Chem. 210, 597-606) proposed that this enzyme possesses two discrete sites capable of binding hexose moieties, one serving as the substrate binding site and a second, regulatory in function, to which inhibitory 6-phosphates bind. Subsequent work has provided further experimental support for this proposal. The pioneering work by Crane and Sols focused primarily on the specificity of these sites with respect to requirements for orientation of hydroxyl substituents at the various positions of the pyranose ring. The present study explores additional aspects of the specificity of these sites, namely, the effect of substitution of a sulfur atom in place of the oxygen in the pyranose ring on ability to serve as substrate or inhibitor, and the effect of modification in charge of the substituent at the 6-position on inhibitory effectiveness. 5-Thioglucose is a linear competitive (versus glucose) inhibitor of rat brain hexokinase, with a Ki of about 0.2 mM, and is a linear mixed inhibitor (versus ATP), with Ki values in this same range. 5-Thioglucose is not, however, readily phosphorylated by brain hexokinase. Thus, although 5-thioglucose binds with moderate affinity to the glucose binding site, it is not effectively used as a substrate of the enzyme. Inhibition of brain hexokinase by glucose 6-phosphate or its analogs has been found to require a dianionic substituent at the 6-position. The 6-fluorophosphate derivative and glucose 6-sulfate are poor inhibitors of the enzyme, and the Ki for inhibition by 1,5-anhydroglucitol 6-phosphate increases markedly at pH values below the pK of the 6-phosphate group, indicating that the monoanionic form is ineffective as an inhibitor. In contrast to the detrimental effect that substitution of the oxygen atom in the pyranose ring with a sulfur has on ability to serve as substrate, 5-thio analogs are considerably more effective as inhibitors, the Ki for inhibition by 5-thioglucose 6-phosphate being 10-fold lower than that seen with glucose 6-phosphate. This effect of the heteroatom substitution can partially offset the decreased inhibition resulting from monoanionic character at the 6-position, but the 6-fluorophosphate derivative of 5-thioglucose 6-phosphate still inhibits with a Ki about 1000-fold greater than that seen with 5-thioglucose 6-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Various nucleoside di- and triphosphates have been compared with respect to their ability to protect rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) activity against inactivation by chymotrypsin, glutaraldehyde, heat, and 5,5′-dithiobis(2-nitrobenzoic) acid. ATP could be distinguished from other nucleoside triphosphates in these comparisons, which may be related to the specificity with which ATP is utilized as a substrate. All nucleoside derivatives examined provided substantial protection against two or more of the above inactivating agents, indicating relatively nonspecific binding of nucleotides by brain hexokinase, consistent with a similar lack of specificity in the inhibition of this enzyme by nucleoside derivatives. The fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tetraiodofluorescein (TIF) was enhanced by binding to brain hexokinase. TNS binding was not affected by the presence of various relevant metabolites (Glc, glucose 6-phosphate, ATP), nor did TNS inhibit the enzyme. In contrast, substantial (approximately 70%) decreases in the fluorescence of bound TIF resulted from the addition of various nucleoside derivatives, and TIF served as a competitive inhibitor of brain hexokinase. These observations are consistent with the view that TIF binds to a nucleotide binding site of the enzyme. The inability of nucleotides to totally displace TIF was taken to indicate the existence of an additional TIF binding site (or sites) discrete from the catalytic site, and probably identical to the site(s) at which TNS binds with no effect on catalytic activity. The effects of saturating levels of ATP and ADP were not additive indicating that both compounds were displacing TIF from the same site i.e., a common nucleotide binding site. Glc, mannose, and 2-deoxyglucose greatly enhanced the ability of nucleotides to displace TIF, while fructose, galactose, and N-acetylglucosamine did not, indicating the existence of interactions between hexose and nucleotide binding sites; the hexoses themselves were not effective at displacing TIF. The enhanced binding of nucleotides in the presence of the first three hexoses but not the latter three can be directly correlated with the relative ability of these hexoses to induce specific conformational changes in the enzyme. The hexoses themselves were not effective at displacing TIF. Glucose 6-phosphate and 1,5-anhydroglucitol 6-phosphate could also displace TIF, and as with the nucleotides, a maximum of approximately 70% decrease in fluorescence was observed and the effectiveness of glucose 6-phosphate was enhanced in the presence of Glc. Other hexose 6-phosphates tested were not effective at displacing TIF. The specificity with which hexose 6-phosphates displaced TIF could be correlated with their ability to induce specific conformational change in the enzyme. The results are discussed as they relate to the kinetic mechanism and allosteric regulation by nucleotides that have been proposed for this enzyme.  相似文献   

19.
I I Vlasova  S P Kuprin 《Biofizika》1992,37(5):910-919
A single SH-group of phosphoglycerate kinase from yeast was modified by mercury-containing spin label. The saturation curves of ESR spectra of the spin-labeled enzyme were studied. The paramagnetic ions of Mn2+ bound to the centre of ion nonspecific binding or active centre in the complex with ATP can influence the saturation of the spin-labeled enzyme. The saturation curves of the ESR signal of the spin-labeled enzyme in the presence of paramagnetic complex of CrATP were studied. It has been demonstrated that the second nonspecific centre of ATP binding is located at the active site of the enzyme (3-phosphoglycerate binding centre).  相似文献   

20.
Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号