首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.  相似文献   

2.
C A Rebello  R D Ludescher 《Biochemistry》1999,38(40):13288-13295
We have investigated how Ca2+ or Mg2+ bound at the high-affinity cation binding site in F-actin modulates the dynamic response of these filaments to ATP hydrolysis by attached myosin head fragments (S1). Rotational motions of the filaments were monitored using steady-state phosphorescence emission anisotropy of the triplet probe erythrosin-5-iodoacetamide covalently attached to cysteine 374 of actin. The anisotropy of filaments containing only Ca2+ increased from 0.080 to 0.137 upon binding S1 in a rigor complex and decreased to 0.065 in the presence of ATP, indicating that S1 induced additional rotational motions in the filament during ATP hydrolysis. The comparable anisotropy values for Mg(2+)-containing filaments were 0.067, 0.137, and 0.065, indicating that S1 hydrolysis did not induce measurable rotational motions in these filaments. Phalloidin, a fungal toxin which stabilizes F-actin and increases its rigidity, increased the anisotropy of F-actin containing either Ca2+ or Mg2+ but not the anisotropy of the 1:1 S1-actin complexes of these filaments. Mg(2+)-containing filaments with phalloidin bound also displayed increased rotational motions during S1 ATP hydrolysis. A strong positive correlation between the phosphorescence anisotropy of F-actin under specific conditions and the extent of the rotational motions induced by S1 during ATP hydrolysis suggested that the long axis torsional rigidity of F-actin plays a crucial role in modulating the dynamic response of the filaments to ATP hydrolysis by S1. Cooperative responses of F-actin to dynamic perturbations induced by S1 during ATP hydrolysis may thus be physically mediated by the torsional rigidity of the filament.  相似文献   

3.
Cofilin/ADF affects strongly the structure of actin filaments and especially the intermolecular contacts of the DNase I binding loop (D-loop) in subdomain 2. In G-actin, the D-loop is cleaved by subtilisin between Met47 and Gly48, while in F-actin this cleavage is inhibited. Here, we report that yeast cofilin, which is resistant to both subtilisin and trypsin, accelerates greatly the rate of subtilisin cleavage of this loop in F-actin at pH 6.8 and at pH 8.0. Similarly, cofilin accelerates strongly the tryptic cleavage in F-actin of loop 60-69 in subdomain 2, at Arg62 and Lys68. The acceleration of the loops' proteolysis cannot be attributed to an increased treadmilling of F-actin for the following reasons: (i) the rate of subtilisin cleavage is independent of pH between pH 6.8 and 8.0, unlike F-actin depolymerization, which is pH-dependent; (ii) at high concentrations of protease the cleavage rate of F-actin in the presence of cofilin is faster than the rate of monomer dissociation from the pointed end of TRC-labeled F-actin, which limits the rate of treadmilling; and (iii) cofilin also accelerates the rate of subtilisin cleavage of F-actin in which the treadmilling is blocked by interprotomer cross-linking of the D-loop to the C terminus on an adjacent protomer. This suggests a substantial flexibility of the D-loop in the cross-linked F-actin. The increased cleavage rates of the D-loop and loop 60-69 reveal extensive exposure of subdomain 2 in F-actin to proteolytic enzymes by cofilin.  相似文献   

4.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

5.
F-Actin was electrophoresed on agarose gels. In the presence of 2 mM MgCl2 and above pH 8.5 F-actin entered 1% agarose; when the electric field was 2.1 V/cm and the pH was 8.8, F-actin migrated through a gel as a single band at a rate of 2.5 mm/h. Labeling of actin with fluorophores did not affect its rate of migration, but an increase in ionic strength slowed it down. After the electrophoresis actin was able to bind phalloidin and heavy meromyosin (HMM) and it activated Mg2+-dependent ATPase activity of HMM. The mobility of F-actin increased with the rise in pH. Acto-S-1 complex was also able to migrate in agarose at basic pH, but at a lower rate than F-actin alone. The orientation of fluorescein labeled F-actin and of fluorescein labeled S-1 which formed rigor bonds with F-actin was measured during the electrophoresis by the fluorescence detected linear dichroism method. The former showed little orientation, probably because the dye was mobile on the surface of actin, but we were able to measure the orientation of the absorption dipole of the dye bound to S-1 which was attached to F-actin, and found that it assumed an orientation largely parallel to the direction of the electric field. These results show that actin can migrate in agarose gels in the F form and that it is oriented during the electrophoresis.  相似文献   

6.
Phalloidin, a toxic product of the mushroom Amanita phalloides, binds specifically to F-actin resulting in strong stabilization of F-actin structure (for review, see; Wieland, 1986). Binding to a specific site on the muscle thin filament F-actin, phalloidin modifies contraction in a tissue specific manner. Phalloidin induced changes depend on functionally important parameters (thin filament activation, cross-bridge kinetics), indicating changes in essential steps of the contractile mechanism. Moreover, there is a different action with different phalloidin derivatives. Such properties make phallotoxins (phalloidin and its derivatives) powerful modifiers for muscle research (for review, see: Bukatina, 1996). Phalloidin-induced changes vary qualitatively with muscle types. In all types of skinned skeletal muscle preparations that have been studied (fast and slow muscles from evolutionarily distant animals), the most general effect of phalloidin is to cause a decrease in tension (Bukatina, Morozov, 1979; Alievskaya et al., 1987; Bukatina et al., 1993). In mammalian skeletal muscles, this decrease in tension may be followed by a slowly developing increase in tension. The resulting tension may considerably exceed the tension before phalloidin administration. In contrast, skinned cardiac muscle responds to phalloidin only by increasing isometric tension from the onset of the response. Moreover, the phalloidin response is completed in approximately one-tenth the time in cardiac muscle that it takes in skeletal muscle. These phalloidin effects in cardiac muscle result in an enhanced Ca2+ responsiveness (Boels, Pfitzer, 1992) with an increase in both the force at maximum Ca2+ activation and the Ca2+ sensitivity (Bukatina et al., 1995).  相似文献   

7.
W S Fillers  S Chacko 《Biochemistry》1987,26(18):5896-5903
Actin activation of the adenosinetriphosphatase (ATPase) of phosphorylated gizzard myosin at low (2 mM) free Mg2+ concentration and 50 mM total ionic strength continues to increase on raising the free Ca2+ concentration near pCa 3. Similar levels of activity can be obtained by increasing the free Mg2+ concentration to a higher (in excess of 4 mM free) concentration. In the presence of micromolar concentrations of free Ca2+ and low free Mg2+ concentration, the actin-activated adenosine 5'-triphosphate (ATP) hydrolysis exhibits an initial rapid rate which progressively slows to a final, lower but more linear rate. In the presence of high divalent cation concentrations, the fast rate of ATP hydrolysis is maintained during the entire ATPase assay. The ionic conditions which favor the slow rate of ATP hydrolysis are correlated with increased proportions of folded myosin monomers while higher rates of ATP hydrolysis are correlated with increased levels of aggregated myosin. Elevating the thin filament proteins to saturating concentrations does not abolish the change in ATPase rate or the final distribution of myosin aggregates and monomers; however, the stability of the myosin aggregates is enhanced by the presence of thin filament proteins in low divalent cation conditions. The nonlinear profile of the actin-activated ATP hydrolysis in low divalent cation concentrations is eliminated by utilizing nonfilamentous, phosphorylated heavy meromyosin. The data presented indicate that Ca2+ and Mg2+ alter monomer-polymer equilibrium of stably phosphorylated myosin. The alteration of monomer-polymer equilibrium by Ca2+ at low Mg2+ concentration modulates ATPase rates.  相似文献   

8.
The initial rates of ATP hydrolysis catalyzed by Fo x F1 (bovine heart submitochondrial particles) preincubated in the presence of Pi for complete activation of the oligomycin-sensitive ATPase were measured as a function of ATP, Mg2+, and Mg x ATP concentrations. The results suggest the mechanism in which Mg x ATP complex is the true substrate of the ATPase and the second Mg2+ bound at a specific pH-dependent site is needed for the catalysis. Simple hyperbolic Michaelis--Menten dependences of the reaction rate on the substrate (Mg x ATP) and activating Mg2+ were found. In contrast to the generally accepted view, no inhibition of ATPase by free Mg2+ was found. Inhibition of the reaction by free ATP is due to a decrease of free Mg2+ needed for the catalysis. In the presence of both Ca2+ and Mg2+ the kinetics of ATP hydrolysis suggest that the Ca x ATP complex is neither hydrolyzed nor competes with Mg x ATP, and free Ca2+ does not affect the hydrolysis of Mg x ATP complex. A crucial role of free Mg2+ in the time-dependent inhibition of ATPase by azide is shown. The dependence of apparent Km for Mg x ATP on saturation of the Mg2+-specific site suggests the formal ping-pong mechanism in which bound Mg2+ participates in the overall reaction after dissociation of one product (most likely Pi) thus promoting either release of ADP (catalytic turnover) or slow isomerization of the enzyme--product complex (formation of the dead-end ADP(Mg2+)-inhibited enzyme). The rate of Mg x ATP hydrolysis only slightly depends on pH at saturating Mg2+. In the presence of limited amounts of free Mg2+ the pH dependence of the initial rate corresponds to the titration of a single group with pKa = 7.5. The simple competition between H+ and activating Mg2+ was observed. The specific role of Mg2+ as a coupling cation for energy transduction in Fo x F1-ATPase is discussed.  相似文献   

9.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

10.
We tested whether phalloidin protects actin in myofibrils from depolymerization by ultraviolet light (UV). I bands in glycerinated rabbit psoas myofibrils were irradiated with a UV microbeam in the presence and absence of phalloidin. We used the retention of contractility of the irradiated I band as the assay for protection of actin by phalloidin, since previous experiments indicated that UV blocks contraction of an irradiated I band by depolymerizing the thin filaments. The I bands of myofibrils incubated in phalloidin were as sensitive to UV as control I bands, indicating that phalloidin did not protect the thin filaments. However, phalloidin did protect F-actin in solution from depolymerization by UV. This apparent contradiction between F-actin in myofibrils and F-actin in solution was resolved by observing unirradiated myofibrils that were stained with rhodamine-phalloidin. It was found that phalloidin does not bind uniformly to the thin filaments, though as the fluorescence image is observed over time the staining pattern changes until it does appear to bind uniformly. We conclude that phalloidin does not protect F-actin in myofibrils from depolymerization by UV because it does not bind uniformly to the filaments.  相似文献   

11.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

12.
Enzymatic hydrolysis of e-ATP by F-actin with and without application of sonic vibration at various pHs was investigated and compared with that of ATP. These was no significant difference on enzymatic activity between F-actin-bound e-ADP and F-actin-bound ADP. The hydrolysis rate of e-ATP under sonic vibration decreases monotonically with decreasing pH, similar to that of ATP. The magnitude of e-ATP hydrolysis rate was, however, about one third of that of ATP hydrolysis rate in the pH range between 6.3 and 8.5. Enzymatic hydrolysis of e-ATP without sonic vibration at room or higher temperatures decreases monotonically with increasing pH and becomes almost negligible at pH 8.5. The pH profile and the magnitude of enzymatic hydrolysis without sonic vibration were similar with ATP. Since the fluorescence intensity of e-ATP at 410 nm is enhanced by the binding with G-actin, the exchange binding affinity of e-ATP to G-actin which can be measured fluorophotometrically was about one third of that of ATP.  相似文献   

13.
The cyclic peptide phalloidin, one of the toxic components of Amanita phalloides prevented the drop of viscosity of F-actin solutions after the addition of 0.6 M KI and inhibited the ATP splitting of F-actin during sonic vibration. The data concerning ATP splitting are consistent with the assumption (a) that only 1 out of every 3 actin units of the filaments needs to be combined with phalloidin in order to suppress the contribution of these 3 actins to the ATPase activity of the filament and (b) that all actin units of the filaments can combine with phalloidin with a very high affinity. -halloidin did not only stabilize the actin-actin bonds in the F-actin structure but it also increased the rate of polymerization of G-actin to F-actin. The ability of F-actin to activate myosin ATPase was not affected by phalloidin. The tropomyosin-troponin complex did not prevent the stabilizing effect of phalloidin on the F-actin structure.  相似文献   

14.
Localization of the phalloidin and nucleotide-binding sites on actin   总被引:5,自引:0,他引:5  
Phalloidin was found to block nucleotide exchange in F-actin, without interfering with nucleotide hydrolysis. This inhibition of nucleotide exchange occurs under conditions in which monomers are able to exchange. The distance separating a fluorescent chromophore attached to phalloidin from the nucleotide on actin was determined using fluorescence resonance energy-transfer spectroscopy. They are separated by less than 1.0 nm. Added confirmation of the close proximity of phalloidin to nucleotide was obtained by extracting a small peptide-ATP complex from an actin digest. The peptide comprises residues 114-118, which are from the same region as the residues that others have shown to crosslink to phalloidin [Vandekerckhove et al. (1985) EMBO J. 4, 2815-2818]. The results suggest that phalloidin has two major effects. It traps actin monomers in a conformation which appears to be distinct from G-actin and it stabilizes the structure of F-actin, an event accompanied by the trapping of ADP.  相似文献   

15.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

16.
As previously reported when a specific thiol group, S2, of myosin reacts with N-ethylmaleimide (NEM), its Ca2+-ATPase activity is decreased. Therefore, the reactivity of S2 can be estimated by measuring the decrement of the enzymatic activity. Using the change in the reactivity as a structural probe, we investigated whether F-actin affects the conformation around the region containing S2 under physiological conditions (at neutral pH and low ionic strength). 1. Experiments were carried out with heavy meromyosin (HMM), S1 of which had heen blocked with NEM, to observe the reactivity of S2 alone. In the experiments done in the presence of F-actin, the Ca2+-ATPase activity was measured using the heavy meromyosin fraction after actin had been removed by centrifugation and gel filtration. 2. ATP and other nucleotides activated the reactivity of S2 in the presence of Mg2+. On the other hand, F-actin markedly activated the reactivity of S2 which had been increased by ATP, but not by the other nucleotides. 3. The above cooperative action of F-actin with ATP was not observed in the presence of Ca2+ instead of Mg2+, or above 0.2 M KCl. These results suggest that the S2 region of the myosin molecule is a key region in the molecular interaction of the actin myosin-ATP system under physiological conditions.  相似文献   

17.
The Mg2+-ATPase activity of Acanthamoeba myosin IA is activated by F-actin only when the myosin heavy chain is phosphorylated at a single residue. In order to gain insight into the conformational changes that may be responsible for the effects of F-actin and phosphorylation on myosin I ATPase, we have studied their effects on the proteolysis of the myosin IA heavy chain by trypsin. Trypsin initially cleaves the unphosphorylated, 140-kDa heavy chain of Acanthamoeba myosin IA at sites 38 and 112 kDa from its NH2 terminus and secondarily at sites 64 and 91 kDa from the NH2 terminus. F-actin has no effect on tryptic cleavage at the 91- and 112-kDa sites, but does protect the 38-kDa site and the 64-kDa site. Phosphorylation (which occurs very near the 38-kDa site) has no detectable effect on the tryptic cleavage pattern in the absence of F-actin or on F-actin protection of the 64-kDa site, but significantly enhances F-actin protection of the 38-kDa site. Protection of the 64-kDa site is probably due to direct steric blocking because F-actin binds to this region of the heavy chain. The protection of the 38-kDa site by F-actin may be the result of conformational changes in this region of the heavy chain induced by F-actin binding near the 64-kDa site and by phosphorylation. The conformational changes in the heavy chain of myosin IA that are detected by alterations in its susceptibility to proteolysis are likely to be related to the conformational changes that are involved in the phosphorylation-regulated actin-activated Mg2+-ATPase activities of Acanthamoeba myosins IA and IB.  相似文献   

18.
Myosin (opaque myosin) isolated from the opaque portion of scallop smooth muscle, a catch muscle, was subjected to limited digestion by trypsin during the steady-state ATPase reaction. The 200-kDa heavy chain of opaque myosin was cleaved into 125- and 74-kDa fragments. The proteolytic rate in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. The results suggest that the steady-state intermediate of opaque myosin ATPase in the absence of Ca2+ is EADP, which is consistent with the previous results based on the difference UV-absorption spectrum (Takahashi, M., Sohma, H., & Morita, F. (1988) J. Biochem. 104, 102-107). In the presence of F-actin, the proteolytic rates were decreased, but the digestive patterns by trypsin were similar to those of myosin alone. Even in the presence of F-actin, the proteolytic rate during the ATPase reaction in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. In addition, there was another trypsin-susceptible site which is probably located at 18 kDa from the N-terminal of the heavy chain. The site in the absence of Ca2+ was hardly cleaved when ATP or ADP was present. Similar tendencies were observed even in the presence of F-actin. These findings suggest that the intermediate of opaque myosin ATPase at the steady state in the absence of Ca2+ is EADP even in the presence of F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Actin-activated Mg2+-ATPase activity of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of three serine residues located at the carboxyl-terminal end of each of the two 185,000-Da heavy chains; the phosphorylated molecule has full Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity. Under controlled conditions, chymotrypsin removes a small peptide containing all three phosphorylation sites from the ends of the myosin II heavy chains producing a molecule with heavy chains of 175,000 Da and undigested light chains. The length of the myosin II tail decreased from 89 to 76 nm. Chymotrypsin-cleaved myosin II has complete Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity under standard assay conditions and binds to F-actin as well as undigested myosin II in the absence, but not in the presence, of MgATP. In the presence of MgCl2, undigested myosin II forms biopolar filaments but chymotrypsin-cleaved myosin II forms only parallel (monopolar) dimers, as assessed by analytical ultra-centrifugation and rotary shadow electron microscopy. We conclude that the short segment very near the end of the myosin II tail that contains the three phosphorylatable serines is necessary for the formation of biopolar filaments and, probably as a consequence of filament formation, for the high-affinity binding of myosin II to F-actin in the presence of ATP and the actin-activated Mg2+-ATPase activity of native myosin II. This supports our previous conclusion that actin-activated Mg2+-ATPase of native myosin II is expressed only when the enzyme is in bipolar filaments with the proper conformation as determined by the state of phosphorylation of the heavy chains.  相似文献   

20.
M Miki  P Wahl  J C Auchet 《Biochemistry》1982,21(15):3661-3665
The interaction between F-actin and soluble proteolytic fragments of myosin, heavy meromyosin and myosin subfragment 1 without ATP, has been studied by measuring the static anisotropy and the transient anisotropy decay of the fluorescent chromophore N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine bound to F-actin. In the presence of Ca2+ ions, the mobility of the chromophore was strongly decreased by adding heavy meromyosin or myosin subfragment 1, and this conformation change of F-actin showed a strong cooperativity; that is, a very small amount of myosin heads induced the maximum anisotropy change. On the other hand, in the presence of Mg2+ ions, the addition of a small amount of myosin subfragment 1 or of heavy meromyosin increased the mobility of labeled F-actin that reached a maximum at a molar ratio of about 1/25 or 1/50, respectively. With further addition of myosin heads, the mobility of the labeled actin decreased. From these studies, one concludes that F-actin undergoes a conformation change by interacting with myosin heads, which depends on the nature of the divalent cations present in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号