首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In our previous reports, ATP was shown to induce a drastic change in the conformation of gizzard myosin molecules. For example, the sedimentation constant of unphosphorylated myosin (UM) increased from 6S to 10S although an ATP-induced change in the sedimentation constant did not occur with phosphorylated myosin (Suzuki et al. (1978) J. Biochem. 84, 1529). We now report the finding that the ATP-induced formation of 10S-myosin is associated with a drastic change in the papain digestibility of gizzard UM. With 10S-myosin, the cleavage by papain was strongly inhibited at two regions on heavy chains and at one region on light chains; that is, the junction between the 72K dalton and 22K dalton fragments (i.e., a cleavable site in myosin head), the one between the 22K dalton and 130K dalton fragments (i.e., a head-tail junction), and the one between the 3K dalton and 17K dalton fragments of 20K dalton light chains. An even more intimate correlation between the myosin conformation and the papain digestibility of myosin was demonstrated by using thiophosphorylated myosin (thioPM); the cleavages by papain at the 72K-22K dalton junction and the 22K-130K dalton junction were not inhibited when thioPM was digested.  相似文献   

2.
The heavy chains and the 19-kDa and 20-kDa light chains of bovine brain myosin can by phosphorylated. To localise the site of heavy-chain phosphorylation, the myosin was initially subjected to digestion with chymotrypsin and papain under a variety of conditions and the fragments thus produced were identified. Irrespective of the ionic strength, i.e. whether the myosin was monomeric or filamentous, chymotryptic digestion produced two major fragments of 68 kDa and 140 kDa; the 140-kDa fragment was further digested by papain to yield a 120-kDa and a 23-kDa fragment. These fragments were characterised by (a) a gel overlay technique using 125I-labelled light chains, which showed that the 140-kDa and 23-kDa polypeptides contain the light-chain-binding sites; (b) using myosin photoaffinity labelled at the active site with [3H]UTP, which showed that the 68-kDa fragment contained the catalytic site, and (c) electron microscopy, using rotary shadowing and negative-staining techniques, which demonstrated that after chymotryptic digestion the myosin head remains attached to the tail whereas on papain digestion isolated heads and tails were observed. Thus the 120-kDa polypeptide derived from the 140-kDa fragment is the tail of the myosin, and the 68-kDa fragment containing the catalytic site and the 23-kDa fragment, with the light-chain-binding sites, form the head (S1) portion of the myosin. When [32P]-phosphorylated brain myosin was digested with chymotrypsin and papain it was shown that the heavy-chain phosphorylation site is located in a 5-kDa peptide at the C-terminal end of the heavy chain, i.e. the end of the myosin tail. Using hydrodynamic and electron microscopic techniques, no significant effect of either light-chain or heavy-chain phosphorylation on the stability of brain myosin filaments was observed, even in the presence of MgATP. Brain myosin filaments appear to be more stable than those of other non-muscle myosins. Light-chain phosphorylation did, however, have an effect on the conformation of brain myosin, for example in the presence of MgATP non-phosphorylated myosin molecules were induced to fold into a very compact folded state.  相似文献   

3.
The 20-kDa fragment of myosin subfragment-1 heavy chain was cleaved with cyanogen bromide. Gel electrophoresis of the fragmented peptides indicated the presence of 20-, 18-, 16-, 14-, 12-, and 10-kDa peptides in addition to two peptides smaller than 10 kDa. The renaturation procedure of Muhlrad and Morales (Muhlrad, A., and Morales, M. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1003-1007) was applied to the mixture of these peptides. The peptides larger than 10 kDa, which contain both the reactive SH1 and SH2 groups, were precipitated with F-actin by ultracentrifugation. The 10-kDa peptide was purified and was identified as p10 of Elzinga and Collins (Elzinga, M., and Collins, J. H. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 4281-4284). The renaturation procedure was applied to the purified 10-kDa peptide. The 10-kDa peptide was also precipitated with F-actin by ultracentrifugation. Affinity of the 10-kDa peptide for F-actin was determined with an increase of turbidity, and the apparent dissociation constant was 0.94 microM. Results are consistent with our proposition that a binding site for F-actin exists around the SH1 and SH2 groups of subfragment-1 (Katoh, T., Imae, S., and Morita, F. (1984) J. Biochem. 95, 447-454; Katoh, T., and Morita, F. (1984) J. Biochem. 96, 1223-1230).  相似文献   

4.
The amino acid sequence of the 50-kDa fragment that is released by limited tryptic digestion of the head portion of rabbit skeletal muscle myosin was determined by analysis and alignment of sets of peptides generated by digestion of the fragment at arginine or methionine residues. This fragment contains residues 205-636 of the myosin heavy chain; among the residues of particular interest in this fragment are N epsilon-trimethyllysine, one of four methyl-amino acids in myosin, and Ser-324, which is photoaffinity labeled by an ATP analogue (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995). Combination of this sequence with those of the 23- and 20-kDa fragments yields an 809-residue sequence that constitutes most of the heavy chain of chymotryptic S-1 of this myosin.  相似文献   

5.
We have previously purified and characterized a Dictyostelium myosin II heavy chain kinase which phosphorylates threonine residues (C?té, G. P., and Bukiejko, U. (1987) J. Biol. Chem. 262, 1065-1072). The phosphorylated threonines are located within a 34-kDa fragment which can be selectively cleaved from the carboxyl terminal end of the Dictyostelium myosin II tail. Tryptic and chymotryptic digests of the 34-kDa fragment phosphorylated with the kinase have now been performed and the resulting phosphopeptides isolated and sequenced. Two phosphorylated threonine residues have been identified, corresponding to residues 1833 and 2029 in the complete amino acid sequence of the Dictyostelium myosin II heavy chain. These amino acids are 87 and 283 residues, respectively, distant from the carboxyl terminus of the Dictyostelium myosin II heavy chain and are present in sections of the tail which seem to be alpha-helical coiled coils. In contrast, the three Acanthamoeba myosin II heavy chain phosphorylation sites are located within 10 residues of each other in a small globular domain at the carboxyl terminal tip of the tail (C?té, G. P., Robinson, E. A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). This suggests that the mechanism by which heavy chain phosphorylation inhibits the actin-activated ATPase activity and filament-forming properties of the two myosins may be quite different.  相似文献   

6.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

7.
Myosin purified from rabbit alveolar macrophages has been shown previously to be phosphorylated on the rod portion of the heavy chain and on the 20-kDa light chains (Trotter, J.A. (1982) Biochem Biophys. Res. Commun. 106, 1071-1077). Phosphorylation of the 20-kDa light chains by endogenous kinase activity is associated with a significant enhancement of the actin-activated MgATPase activity (Trotter, J.A., and Adelstein, R.S. (1979) J. Biol. Chem. 254, 8781-8785), whereas the function of heavy-chain phosphorylation is unknown. The isolated heavy chains of myosin purified from freshly harvested cells contain between 0.4 and 1.5 mol of PO4/mol of heavy chain, all esterified to serine residues. Using myosin phosphorylated by incubating living unstimulated macrophages in the presence of 32Pi, two-dimensional thin-layer mapping of tryptic peptides derived from heavy chains yields four phosphopeptides, which are phosphorylated to different extents. Limited trypsin digestion of similar radioactive myosin removes all radioactivity from the heavy chain while reducing its apparent molecular mass by less than 10 kDa. It is concluded that the heavy chain of macrophage myosin is phosphorylated on as many as four serines within 10 kDa of the tip of the tail.  相似文献   

8.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

9.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

10.
We have shown that the phosphorylation of smooth muscle regulatory myosin light chain (L20) with myosin light chain kinase (MLCK) produces faster moving bands (GMP1: heterodimer myosin with 1 unphosphorylated L20 and 1 mono-phosphorylated L20, GMP2: homodimer myosin with 2 mono-phosphorylated L20S) on native pyrophosphate polyacrylamide gel electrophoresis (PP1 PAGE) (J. Biochem. 100, 259-268, 1986; J. Biochem. 100, 1681-1684, 1986). However, the mobility of the myosin phosphorylated, at its L20, with protein kinase C (PK-C) was the same that of the unphosphorylated myosin (GM) on PPi PAGE. When the myosin prephosphorylated with MLCK was further phosphorylated with PK-C, PPi PAGE analysis showed only one band comigrating with GM, i.e., GMP1 and GMP2 migrated to the same position as GM. Conversely, when the myosin prephosphorylated with PK-C was further phosphorylated with MLCK, GMP1 and GMP2 were not produced. Thus the effect of L20 phosphorylated with PK-C is quite the opposite of that with MLCK, and the former predominated over the latter. We speculate that phosphorylation of L20 with PK-C "freezes" myosin in the inactive state.  相似文献   

11.
Tryptic digestion patterns reveal a close similarity of the substructure of frog subfragment-1 (S1) to that established for rabbit S1. The 97-kDa heavy chain of chymotryptic S1 of frog myosin is preferentially cleaved into three fragments with apparent molecular masses of 29 kDa, 49 kDa and 20 kDa. These fragments correspond to the 27-kDa, 50-kDa and 20-kDa fragments of rabbit S1, respectively; this is indicated by the sequence of their appearance during digestion, by the suppression by actin of the generation of the 49-kDa and 20-kDa peptides, and by a nucleotide-promoted cleavage of the 29-kDa peptide to a 24-kDa fragment and the 49-kDa peptide to a 44-kDa fragment, analogous to the nucleotide-promoted cleavage of the 27-kDa and 50-kDa fragments of rabbit S1 to the 22-kDa and 45-kDa peptides. The same changes in the digestion patterns as those produced by the presence of nucleotide (ATP or its beta,gamma-imido analog AdoP P[NH]P) at 25 degrees C were observed when the digestion was carried out at 0 degrees C in the absence of nucleotide. The low-temperature-induced changes were particularly well seen in the preparations from frog myosin. The presence of ATP or AdoP P[NH]P at 0 degrees C enhanced, whereas the complex formation with actin prevented, the low-temperature-induced changes. The results are consistent with there being two fundamental conformational states of the myosin head in an equilibrium that is dependent on the temperature, the nucleotide bound at the active site, and the presence or absence of actin.  相似文献   

12.
M Burke  S Zaager  J Bliss 《Biochemistry》1987,26(5):1492-1496
The stability of myosin subfragment 1 (S1) to thermal denaturation has been followed by limited tryptic proteolysis. Digestions done during the thermal denaturation show that at temperatures at and above 37 degrees C there is a marked increase in the susceptibility of S1 to tryptic degradation, as evidenced by the loss of all bands corresponding to the normally trypsin-resistant fragments of 50, 27, and 21 kDa of the heavy chain and to the light chain. The enhanced digestion of S1 appears to be due to a general unfolding of all segments of S1, although the 50-kDa segment appears to unfold at a lower temperature than the remainder of the S1 structure. Digestions done after 30-min exposure to higher temperatures or after subsequent cooling to 25 degrees C show marked differences in the susceptibility of the S1 to trypsin. This suggests that, on cooling, a substantial portion of the S1, but not the 50-kDa segment, is capable of refolding to a state corresponding closely to that in the native S1. These data indicate that in terms of thermal denaturation the S1 behaves as though it is comprised of two domains--an unstable 50-kDa domain and a more stable domain comprised of the 27- and 21-kDa segments of the heavy chain interacting with the light chain, as proposed recently by Setton and Muhlrad [Setton, A., & Muhlrad, A. (1984) Arch. Biochem. Biophys. 235, 411-417]. The rates of thermal inactivation of the ATPase of S1 are found to correspond closely to the decay rates for the 50-kDa fragment, suggesting that this segment in S1 is closely associated with the ATPase function of the protein.  相似文献   

13.
The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosin I depends on phosphorylation of its single heavy chain. The activity of the myosin I heavy chain kinase is increased about 50-fold by autophosphorylation, and the rate of kinase autophosphorylation is enhanced about 20-fold by acidic phospholipids independent of the presence of Ca2+ (Brzeska, H., Lynch, T. J., and Korn, E. D. (1990) J. Biol. Chem. 265, 3591-3594). In this paper, we show that chymotryptic digestion of the kinase produces a 54-kDa fragment which contains three to four of the approximately 11 original phosphorylation sites and whose activity is greatly stimulated by autophosphorylation. However, both the rate of autophosphorylation and the kinase activity of the 54-kDa fragment are independent of phospholipid and comparable to those of intact kinase in the presence of phospholipid. These data imply that the (probably NH2-terminal) region(s) removed by proteolysis is necessary for phospholipid-sensitive inhibition of autophosphorylation of sites residing within the (probably COOH-terminal) 54-kDa fragment. The 54-kDa fragment contains the catalytic site of the kinase as well as three to four sites whose phosphorylation is necessary for full expression of kinase activity. The middle region of the kinase molecule contains proline-rich regions that are similar to the COOH-terminal tail of the kinase substrate, Acanthamoeba myosin I.  相似文献   

14.
We reported in the preceding paper [Muno, D., et al. (1987) J. Biochem. 101, 661-669] that the dinitrophenyl group exclusively introduced to SH1 on the 20-kDa fragment of myosin subfragment 1 was cross-linked to the 50-kDa fragment by irradiation, and that limited trypsinolysis of the cross-linked S1 generated an 83-kDa peptide, a cross-linking product between the 20- and 50-kDa fragments. This paper will deal with the location of the cross-linked residue on the 50-kDa fragment. When the 83-kDa fragment labeled at SH2 with a fluorogenic SH reagent was subjected to bromocyanolysis, a main fluorescent band, which implied a cross-linked peptide, appeared in the position with an apparent molecular mass of 18.5-kDa on SDS-PAGE. On the other hand, another cross-linked peptide was obtained from a complete tryptic digest of a 83-kDa fragment rich fraction. Amino acid sequence analysis of the two cross-linked peptides revealed that the DNP moiety attached at SH1 was cross-linked with a residue in the segment of the heavy chain spanning the 485-493 region from the N-terminus of the heavy chain.  相似文献   

15.
N Nath  S Nag  J C Seidel 《Biochemistry》1986,25(20):6169-6176
The thiol of the gizzard myosin heavy chain, which reacts most rapidly with N-ethylmaleimide (MalNEt), has been located in the subfragment 2 region of myosin rod by fragmentation of [14C]-MalNEt-labeled myosin with papain and chymotrypsin. MalNEt reacts more slowly with thiols present in the 70- and 25-kilodalton (kDa) papain fragments of subfragment 1. The reaction of MalNEt with thiols present in these regions is increased on addition of ATP by factors of 2 and 10, respectively, when myosin is modified in 0.45 M NaCl where it is present in the extended, 6S conformation. The rate of increase of Mg2+-activated adenosinetriphosphatase (ATPase) activity, which reflects the loss of ability of myosin to assume the folded, 10S conformation, and the rate of loss of K+-EDTA-activated activity produced by MalNEt are both accelerated 5- to 10-fold on addition of ATP. The rates at which ATPase activities change agree closely to the reaction rates of MalNEt with the 25-kDa region of subfragment 1; therefore, the changes in these activities can be attributed to modification of a thiol of the 25-kDa segment. An increase in actin-activated ATPase activity produced by reaction of myosin with MalNEt in 0.45 M NaCl is accelerated by ATP by a factor of at least 4. Reaction with [14C]MalNEt in the presence of MgATP and 0.2 M NaCl, where myosin is in the 10S form, inhibits the incorporation of radioactive MalNEt into the 25-kDa papain fragment of subfragment 1. It also prevents the increase in actin-activated ATPase activity and preserves the ability of myosin to assume the 10S form.  相似文献   

16.
Smooth muscle myosin was purified from turkey gizzards with the 20,000-dalton light chains in the unphosphorylated state. The actin-activated MgATPase activity was 4 nmol/min/mg at 25 degrees C. When the myosin was phosphorylated to 2 mol of Pi/mol of myosin using purified myosin light chain kinase, calmodulin, and ATP, the actin-activated MgATPase activity rose to 51 nmol/min/mg. Complete dephosphorylation of the same myosin by a purified phosphatase lowered the activity to 5 nmol/min/mg, and complete rephosphorylation of the myosin following inhibition of the phosphatase raised it again to 46 nmol/min/mg. Human platelet myosin could be substituted for turkey gizzard myosin, with similar results. A chymotryptic fragment of smooth muscle myosin which retains the phosphorylated site on the 20,000-dalton light chain of myosin was prepared. Using the same scheme for reversible phosphorylation, this smooth muscle heavy meromyosin was found to show the same positive correlation between phosphorylation of the myosin light chain and the actin-activated MgATPase activity. The results with smooth muscle heavy meromyosin show that the effect of phosphorylation on the actin-activated MgATPase activity can be separated from the effects of phosphorylation on myosin filament assembly.  相似文献   

17.
3'(2')-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP) was used as a photoaffinity label of the ATP binding site of unphosphorylated chicken gizzard myosin. Specific photolabeling of the active site of 6 S myosin was assured by forming a stable myosin.Co(II)Bz2ADP.orthovanadate complex (termed trapping) prior to irradiation. Co2+ was used in place of Mg2+ to prevent the known photoreaction of vanadate with myosin which destabilizes the trapped complex. [3H] Bz2ADP.Pi was also stably trapped on gizzard myosin by forming the 10 S folded conformation of the protein in the presence of [3H]Bz2ATP and Mg2+. Irradiation of 6 S myosin containing orthovanadate trapped [3H] Bz2ADP or 10 S trapped [3H]Bz2ADP.Pi gave 32 and 30% covalent incorporation, respectively. The 50-kDa and precursor 68-kDa tryptic peptides of the subfragment-1 heavy chain derived from both forms of myosin were found to contain essentially all of the covalently attached [3H]Bz2ADP. Parallel experiments with untrapped [3H]Bz2ADP showed extensive nonspecific labeling of all of the major tryptic peptides and the light chains. Eight labeled peptides, isolated from 6 and 10 S photolabeled myosin, contained the sequence G319-H-V-P-I-X-A-Q326, where X corresponds to labeled proline 324. [14C]Bz2ADP was previously shown to label serine 324 in skeletal subfragment-1 (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995), which corresponds to alanine 325 in the gizzard sequence. Thus, this region of the 50-kDa tryptic fragment, near the nucleotide binding site, in both skeletal and smooth muscle myosins, must fold in essentially the same manner.  相似文献   

18.
To probe the molecular properties of the actin recognition site on the smooth muscle myosin heavy chain, the rigor complexes between skeletal F-actin and chicken gizzard myosin subfragments 1 (S1) were investigated by limited proteolysis and by chemical cross-linking with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide. Earlier, these approaches were used to analyze the actin site on the skeletal muscle myosin heads [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Biochemistry 20, 2110-2120; Labbé, J.P., Mornet, D., Roseau, G., & Kassab, R. (1982) Biochemistry 21, 6897-6902]. In contrast to the case of the skeletal S1, the cleavage with trypsin or papain of the sensitive COOH-terminal 50K-26K junction of the head heavy chain had no effect on the actin-stimulated Mg2+-ATPase activity of the smooth S1. Moreover, actin binding had no significant influence on the proteolysis at this site whereas it abolished the scission of the skeletal S1 heavy chain. The COOH-terminal 26K segment of the smooth papain S1 heavy chain was converted by trypsin into a 25K peptide derivative, but it remained intact in the actin-S1 complex. A single actin monomer was cross-linked with the carbodiimide reagent to the intact 97K heavy chain of the smooth papain S1. Experiments performed on the complexes between F-actin and the fragmented S1 indicated that the site of cross-linking resides within the COOH-terminal 25K fragment of the S1 heavy chain. Thus, for both the striated and smooth muscle myosins, this region appears to be in contact with F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Chicken gizzard myosin was modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine (IAEDANS) in the presence of ATP and in 0.15 M KCl, where the myosin assumed 10S conformation. From the tryptic digest of the modified myosin, a fluorescent fragment (24 kilodaltons) was isolated by gel filtration on a Sephadex G-100 column followed by chromatography on a CM 52 column. The amino acid sequence of the fragment was analyzed by conventional methods, and was: (S,Z)K-P-L-S-D-D-E-K-F-L-F-V-D-K-N-F-V-N-N-P-L-A-Q-A-D-W-S-A-K-K- L-V-W-V-P-S-E-K-H-G-F-E-A-A-S-I-K-E-E-K-G-D-E-V-T-V-E-L-Q-E-N-G-K-K- V-T-L-S-K-D-D-I-Q-K-M-N-P-P-K-F-S-K-V-E-D-M-A-E-L-T-C-L-N-E-A-S-V-L- H-N-L-R-E-R-Y-F-S-G-L-I-Y-T-Y-S-G-L-F-C-V-V-I-N-P-Y-K-Q-L-P-I-Y-S-E-K-I- I-D-M-Y-K-G-K-K-R-H-E-M-P-P-H-I-Y-A-I-A-D-T-A-Y-R-S-M-L-Q-D-R-E-D-Q- S-I-L-C-T-G-E-S-G-A-G-K-T-E-N-T-K-K-V-I-Q-Y-L-A-V-V-A-S-S-H-K-G-K. The amino-terminus was blocked, and the fragment was assigned as an amino-terminal part of the heavy chain of gizzard myosin. Position 127 was occupied by epsilon-N-trimethyllysine. Trp-130 of rabbit skeletal myosin heavy chain, which was reported to cross-link to an azide derivative of ATP by Okamoto and Yount (Proc. Natl. Acad. Sci. U.S. 82, 1575-1579 (1985], was replaced by glutamine in gizzard myosin. Cys-93 of the fragment is the amino acid residue whose reaction with IAEDANS alters the ATPase activity of gizzard myosin (Onishi, H. (1985) J. Biochem. 98, 81-86).  相似文献   

20.
Previous reports have shown that papain-digested gizzard subfragment-1 (PAP-S1) has a cleaved regulatory light chain (LC20), and Vmax similar to phosphorylated heavy meromyosin (HMM) (Greene et al., Biochemistry 22:530-535, 1983; Sellers et al., J. Biol. Chem. 257:13880-13883, 1982; Umemoto et al., J. Biol. Chem. 264:1431-1436, 1989], while S. aureus protease-digested S-1 (SAP-S1) has intact LC20, but Vmax closer to that of unphosphorylated HMM [Ikebe and Hartshorne, 1985]. To determine whether intact LC20 inhibits ATPase activity for subfragment-1 (S1), we compared the kinetic properties and structures of unphosphorylated PAP-S1 and SAP-S1. SDS-PAGE showed that SAP-S1 had 68 and 24 KDa heavy chain and 20 and 17 KDa light chain components. PAP-S1 (15 minutes digestion at 20 degrees C) also had 68 and 17 KDa bands, but the single 24 KDa band (24HC) was replaced by a group of 22-24 KDa fragments and LC20 was cleaved to a 16 KDa fragment. At 13 mM ionic strength, both PAP-S1 and SAP-S1 had Vmax similar to phosphorylated HMM (1.1-1.5 s-1). SAP-S1 had the same KATPase as phosphorylated HMM (38 microM actin), but KATPase for PAP-S1 was 3-fold stronger (11 microM actin). Subsequent digestion of SAP-S1 with papain did not significantly change Vmax, but as LC20 and 24HC were cleaved, both KATPase and Kbinding strengthened 3- to 5-fold. Thus, intact LC20 did not inhibit, and cleavage of LC20 did not increase Vmax for S1. Rather, papain cleavage of LC20 and 24HC was associated with strengthened actin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号