首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanism of action of Vibrio parahaemolyticus thermostable direct hemolysin (TDH) on cultured cells still remains unclear. We show that addition of osmotic stabilizers, such as polyethylene glycol and dextran, could not protect cultured rat embryonic fibroblast cells (Rat-1) against cytotoxicity induced by TDH, unlike their protection against the hemolytic activity of TDH. By contrast, 100 microM monodansylcadaverine, as well as the presence of 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) in medium, protected the cells against cytotoxicity of TDH. Binding of TDH to Rat-1 cells and intracellular localization of TDH were affected by monodansylcadaverine and EGTA as analyzed by flow cytometry and confocal microscopy. On the hemolytic activity of TDH, monodansylcadaverine and EGTA had no effect. These results suggest that the mechanism of cytotoxicity of TDH on Rat-1 cells was different from that of hemolytic activity of TDH on red blood cells.  相似文献   

3.
4.
The thermostable direct hemolysin (TDH) has been proposed to be a major virulence factor of Vibrio parahaemolyticus. We have recently completed the genome sequence of a TDH-producing V. parahaemolyticus strain, RIMD2210633. In this study, we constructed tdh-deletion mutants from the sequenced strain by homologous recombination and analyzed their phenotypes. Although the deletion of both copies of tdh completely abolished the hemolytic activity of the wild-type strain, the deletion did not affect the cytotoxicity to HeLa cells. Enterotoxicity, assayed by the rabbit ileal loop test, was lowered by tdh deletion, but the mutant still showed partial fluid accumulation in rabbit intestine. These results indicate that the cytotoxicity and enterotoxicity of TDH-producing V. parahaemolyticus are not explained by TDH alone, and suggest that an unknown virulence factor(s) could be involved in these pathogenic activities.  相似文献   

5.
We have found that the antioxidant N-acetylcysteine (NAC) strongly inhibited ricin-induced apoptotic cell death in U937 cells (human myeloid leukemia), as judged by cytotoxicity, nuclear morphological change, and DNA fragmentation. Consistent with these observations, a significant depletion of cellular glutathione was observed in ricin-treated cells, and NAC prevented the decrease in cellular glutathione. On the other hand, among the caspase inhibitors tested, Z-Asp-CH2-DCB, which inhibited ricin cytotoxicity, also suppressed ricin-mediated glutathione depletion, while NAC did not affect the generation of caspase-3 like activity in ricin-treated cells. These results suggest that glutathione loss takes place downstream from caspase activation during the ricin-induced apoptotic process. Treatment with a specific inhibitor of glutathione biosynthesis, buthionine sulfoximine (BSO) failed to induce apoptosis, and had no effect on the overall extent of ricin-induced apoptosis, even though the glutathione level was decreased to less than 5% of the control level. However, NAC still protected against ricin-induced apoptosis in the BSO-treated cells. We conclude that glutathione loss is one of several apoptotic changes caused by ricin, but is not a sufficient factor for the progress of apoptosis. NAC may prevent ricin-induced apoptosis through maintaining an intracellular reducing condition by acting as a thiol supplier.  相似文献   

6.
Cholix toxin (Cholix) is a novel ADP-ribosylating cytotoxin produced by Vibrio cholerae, which utilizes eukaryotic elongation factor 2 as a substrate and acts by a mechanism similar to that of diphtheria toxin and Pseudomonas exotoxin A. First it was found that Cholix-treated HeLa cells exhibited caspase-dependent apoptosis, whereas intestinal cells such as Caco-2, HCT116, and RKO did not. Here we investigated Cholix-induced cell death signaling pathways in HeLa cells. Cholix-induced cytochrome c release into cytosol was initiated by specific conformational changes of pro-apoptotic Bak associated with Bax. Silencing of bak/bax genes or bak gene alone using siRNA significantly suppressed cytochrome c release and caspase-7 activation, but not activation of caspases-3 and -9. Although pretreatment with a caspase-8 inhibitor (Z-IETD-FMK) reduced Cholix-induced cytochrome c release and activation of caspases-3, -7, and -9, cytotoxicity was not decreased. Pretreatment with Z-YVAD-FMK, which inhibits caspase-1, -4, and -5, suppressed not only cytochrome c release, activation of caspase-3, -7, -8, or -9, and PARP cleavage, but also cytotoxicity, indicating that caspase-1, -4, and -5 activation is initiated at an early stage of Cholix-induced apoptosis and promotes caspase-8 activation. These results show that the inflammatory caspases (caspase-1, -4, and -5) and caspase-8 are responsible for both mitochondrial signals and other caspase activation. In conclusion, we showed that Cholix-induced caspase activation plays an essential role in generation of apoptotic signals, which are mediated by both mitochondria-dependent and -independent pathways.  相似文献   

7.
WEHI164S cells were found to be very sensitive targets for in vitro killing in a 6-h culture when liver or splenic lymphocytes were used as effector cells in mice. Of particular interest, a limiting cell-dilution analysis showed that effector cells were present in the liver with a high frequency (1/4,300). In contrast to YAC-1 cells as NK targets, perforin-based cytotoxicity was not highly associated with WEHI164S killing. The major killer mechanism for WEHI164S targets was TNFalpha-mediated cytotoxicity. By cell sorting experiments, both NK cells and intermediate T cells (i.e., TCR(int) cells) were found to contain effector cells against WEHI164S cells. However, the killer mechanisms underlying these effector cells were different. Namely, NK cells killed WEHI164S cells by perforin-based cytotoxicity, TNFalpha-mediated cytotoxicity, Fas ligand cytotoxicity, and other mechanisms, whereas intermediate T cells did so mainly by TNFalpha-mediated cytotoxicity. These results suggest that TNFalpha-mediated cytotoxicity mediated by so-called natural cytotoxic (NC) cells comprised events which were performed by both NK and intermediate T cells using somewhat different killer mechanisms. Intermediate T cells which were present in the liver were able to produce TNFalpha if there was appropriate stimulation.  相似文献   

8.
Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4.  相似文献   

9.
Naringin (NG), a flavonoid in grapefruit and citrus, has been reported to exhibit antioxidant effects and pharmacological actions. Recently, we have reported that NG suppressed the cytotoxicity and apoptosis induced by H(2)O(2), a typical pro-oxidant, in mouse leukemia P388 cells. Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. It has been suggested that Ara-C-induced cytotoxicity is caused by apoptosis, which is mediated by reactive oxygen species (ROS). In this study, we examined the effect of NG on the cytotoxicity and apoptosis in mouse leukemia P388 cells treated with Ara-C. Ara-C caused cytotoxicity in a concentration and time-dependent manner in the cells. N-Acetyl-L-cysteine (NAC), cystamine (CysA) or a reduced form of glutathione (GSH), typical antioxidants significantly blocked Ara-C-induced cytotoxicity. Similarly, Ara-C-induced cell death was completely prevented by NG. NG strongly reduced ROS production caused by Ara-C in the cells. NG slightly increased the activities of antioxidant enzymes, catalase and glutathione peroxidase. Ara-C caused apoptosis with nuclear morphological change and DNA fragmentation. NG remarkably attenuated the Ara-C-induced apoptosis. NG completely blocked the DNA damage caused by Ara-C treatment at 6 h using the Comet assay. Our data suggest that NG reduces Ara-C-induced oxidative stress through both an inhibition of the generation of ROS production and an increase in antioxidant enzyme activities. Consequently, NG blocked apoptosis caused by Ara-C-induced oxidative stress, resulting in the inhibition of the cytotoxicity of Ara-C.  相似文献   

10.
Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells.   总被引:10,自引:0,他引:10  
The hypothesis that activation of apoptosis and DNA fragmentation is involved in TNF-mediated cytolysis of U937 tumor cells was investigated. Morphological, biochemical, and kinetic criteria established that TNF activates apoptosis as opposed to necrosis. Within 2-3 h of exposure to TNF, U937 underwent the morphological alterations characteristic of apoptosis. This was accompanied by cleavage of DNA into multiples of nucleosome size fragments. Both of these events occurred 1-2 h prior to cell death as defined by trypan blue exclusion or 51Cr release. DNA fragmentation was not a non-specific result of cell death since U937 cells lysed under hypotonic conditions did not release DNA fragments. The percentage of cells undergoing apoptosis depended on the concentration of TNF and was augmented by the addition of cycloheximide. A TNF-resistant variant derived from U937 did not undergo apoptosis in response to TNF, even in the presence of cycloheximide. Furthermore, TNF could still activate NFkB in this variant, suggesting that this pathway is not involved in TNF-mediated cytotoxicity. Two agents known to inhibit TNF-mediated cytotoxicity, ZnSO4 and 3-aminobenzamide, were shown to inhibit TNF-induced apoptosis. Taken altogether, these data support the hypothesis that activation of apoptosis is at least one essential step in the TNF lytic pathway in the U937 model system.  相似文献   

11.
Previous studies showed that exposure to Vibrio vulnificus cytolysin (VVC) caused characteristic morphologic changes and dysfunction of vascular structures in lung. VVC showed cytotoxicity for mammalian cells in culture and acted as a vascular permeability factor. In this study, the underlying mechanisms of VVC-induced cytotoxicity was investigated on ECV304 cell, a human vascular endothelial cell line. When cells were exposed to 0.4 hemolytic units (HU) of VVC, consecutive apoptotic events were observed; the elevation of superoxide anion (O (-.)(2)), the release of cytochrome c, the activation of caspase-3, the cleavage of poly(ADP-ribose) polymerase, and the DNA fragmentation. The pretreatment with 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), O(-.) 2) scavenger, completely abolished O(-.)(2) levels and downstream apoptotic events. Moreover, pretreatment with cyclosporin A (CsA), a mitochondrial permeability transition inhibitor, was capable of attenuating O(-.)(2)-mediated cytochrome c release and caspase-3 activation, and consequent apoptosis. Apoptosis, as demonstrated by oligonucleosomal DNA fragmentation and fluorescence microscopy, was induced 24 h after VVC treatment, which was also prevented by caspase-3 inhibitor, Ac-DEVD-CHO. Caspase-1 inhibitor, Ac-YVAD-CHO, did not protect ECV 304 cells from apoptosis. These results suggest a scenario where VVC-induced apoptosis is triggered by the generation of O(-.)(2), release of cytochrome c from mitochondria, activation of caspase-3, degradation of poly(ADP-ribose) polymerase, and DNA fragmentation. The induction of apoptosis in endothelial cells by VVC may provide a pivotal mechanism for understanding the pathophysiology of septicemia.  相似文献   

12.
Natural Killer cells are immune cells that recognize and eliminate altered and non-self cells from the circulation. To study the interaction between NK cells and target cells, we set up an experimental system consisting of rat Interleukin-2 activated Natural Killer cells (A-NK cells) and rat hepatocytes with a masked Major Histocompatibility Complex (MHC). The masking of the MHC induces recognition of the hepatocytes by the NK cells as non-self. We showed that in vitro apoptosis is rapidly induced in the hepatocytes [Blom et al., 1999] after co-incubation with A-NK cells. Now we describe the morphological changes that occur during and after interaction of A-NK cells with hepatocytes. Confocal laser scanning microscopy showed that the actin cytoskeleton of the NK cells was remodeled during attack of hepatocytes. Some NK cells were in close contact with the hepatocytes while others had formed actin-containing dendrites of varying length that made contact with the hepatocytes. However, dendrite formation is not obligatory for induction of apoptosis because cells that were unable to form these did induce FAS-dependent apoptosis in hepatocytes. Apparently both direct as well as distant contact resulted in apoptosis. Formation of the dendrites was calcium-dependent as EGTA largely prevented it. Importantly, chelation of the calcium also suppressed killing of the hepatocytes. Within 1 h after addition of the A-NK cells, morphological changes in hepatocytes that are characteristic of apoptosis, such as the formation of apoptotic bodies and fragmented nuclei, became apparent. Specifically, the actin cytoskeleton of the hepatocytes was remodeled resulting in the formation of the apoptotic bodies. Inhibition of caspase activity by z-Val-Ala-DL-Asp-fluoromethylketone (100 microM) partly protected against the rearrangement of the actin filaments in the hepatocytes.  相似文献   

13.
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.  相似文献   

14.
The phenomenon of delayed heritable lethal damage (often referred to as ``lethal mutations') in the progeny of cells which survive irradiation is now well established, but little is known of the mechanism by which this cell death occurs. Current theories suggest a generalised genomic instability affecting all cells which leads to the production of some mutations which are lethal, or alternatively that a lethal mutation gene is activated, mutated or induced by radiation and leads to persistent and random cell death at high levels in the progeny. The aim of this study was to look at the morphology of progeny of irradiated cells at various times after irradiation to establish how widespread morphological abnormalities were in the population and whether there was any evidence that such abnormalities were clonal. Using two different cell lines, the results showed that morphological evidence possibly suggestive of apoptosis occurred in the cultures after all doses of radiation and up to 45 cell doublings after exposure. There was no evidence of a decrease in the numbers of damaged or dead cells in colonies with number of divisions after irradiation, or with decreasing original radiation dose. There was a significant dose-dependent increase in the number of cells with microvilli for both cell lines. The dose-dependency of this effect did not change with number of divisions after irradiation. It is clear that morphological evidence of cellular damage persists for several generations after the initial exposure. The effects are widespread in the cell population, and their constancy over time argues strongly for a general instability and against a clonal mechanism, since clonal descendants should die out and leave undamaged survivors. The lack of evidence for necrosis or senescence together with many morphological changes in the cultures suggestive of apoptosis could indicate an active mechanism of cell death. It is concluded that survivor populations of irradiated cells from two widely different mammalian cell lines demonstrate an altered phenotype including gross morphological changes. These result in a higher probability that cell division will fail to yield two healthy progeny. Received: 22 January 1996 / Accepted in revised form: 24 September 1996  相似文献   

15.
The C21-steroidal glycoside auriculoside A (1), recently isolated from the roots of Cynanchum auriculatum, was found to inhibit the growth of several human tumor cell lines and to induce apoptosis in human breast cancer (MCF-7) cells. Compound 1 was evaluated for its in vitro cytotoxicity against MCF-7, HO-8910, and Bel-7402 cells, and for its in vivo antitumor effects on implanted sarcoma-180 (S180) tumors in mice. It showed significant, concentration-dependent inhibition of the cancer cells, both in vitro and in vivo. MCF-7 Cells exposed to 1 displayed typical morphological apoptosis characteristics such as cytoplasm contraction and nuclear-chromatin condensation. Flow-cytometric analysis showed that the MCF-7 cell cycle was arrested at the G0/G1 phase. When treated with 40 microg/ml of 1 for 24, 48, and 72 h, respectively, the apoptotic rates of the cells were ca. 5, 8, and 18.5%, respectively.  相似文献   

16.
These studies were carried out to examine the capacity of alpha-difluoromethylornithine (DFMO) to modulate cell proliferation and apoptosis in cells of squamous cell carcinomas (SCCs) of the head and neck. Exposure of cells to DFMO (5 mM for 48 h) depleted intracellular putrescine and spermidine levels (greater than 5-fold) and inhibited proliferation of the cells without manifestation of cytotoxicity as measured by a clonogenic assay. Exposure of the cells to DFMO did not influence the survival response after exposure to single-dose radiation between 0 and 10 Gy. Treatment of polyamine-depleted cells with 200 nM staurosporine amplified apoptosis 65% (1.65-fold) over that in controls, as determined by flow cytometry. The increased apoptosis after DFMO treatment was effectively inhibited by the addition of 1 mM putrescine or spermidine. Cleavage of poly(ADP-ribose) polymerase (PARP) illustrated that the staurosporine treatment induced apoptosis in the cells within 6 h. Analysis of PARP cleavage indicated that treatment with DFMO accelerated the kinetics of progression of apoptosis but did not influence the sensitivity of cells to 10 nM-1 microM staurosporine. These data suggest an involvement of endogenous polyamines in modulation of proliferation kinetics and apoptosis in human SCCs and suggest opportunities to explore new therapeutic strategies in head and neck cancer patients to be treated with radiation therapy.  相似文献   

17.
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis.  相似文献   

18.
The maintenance of intestinal mucosal integrity depends on a balance between cell renewal and cell death, including apoptosis. The natural polyamines, putrescine, spermidine, and spermine, are essential for mucosal growth, and decreasing polyamine levels cause G(1) phase growth arrest in intestinal epithelial (IEC-6) cells. The present study was done to determine changes in susceptibility of IEC-6 cells to apoptosis after depletion of cellular polyamines and to further elucidate the role of nuclear factor-kappaB (NF-kappaB) in this process. Although depletion of polyamines by alpha-difluoromethylornithine (DFMO) did not directly induce apoptosis, the susceptibility of polyamine-deficient cells to staurosporine (STS)-induced apoptosis increased significantly as measured by changes in morphological features and internucleosomal DNA fragmentation. In contrast, polyamine depletion by DFMO promoted resistance to apoptotic cell death induced by the combination of tumor necrosis factor-alpha (TNF-alpha) and cycloheximide. Depletion of cellular polyamines also increased the basal level of NF-kappaB proteins, induced NF-kappaB nuclear translocation, and activated the sequence-specific DNA binding activity. Inhibition of NF-kappaB binding activity by sulfasalazine or MG-132 not only prevented the increased susceptibility to STS-induced apoptosis but also blocked the resistance to cell death induced by TNF-alpha in combination with cycloheximide in polyamine-deficient cells. These results indicate that 1) polyamine depletion sensitizes intestinal epithelial cells to STS-induced apoptosis but promotes the resistance to TNF-alpha-induced cell death, 2) polyamine depletion induces NF-kappaB activation, and 3) disruption of NF-kappaB function is associated with altered susceptibility to apoptosis induced by STS or TNF-alpha. These findings suggest that increased NF-kappaB activity after polyamine depletion has a proapoptotic or antiapoptotic effect on intestinal epithelial cells determined by the nature of the death stimulus.  相似文献   

19.
The role of mitochondrial KATP (mitoKATP) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoKATP opener, diazoxide, and the mitoKATP blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoKATP channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.  相似文献   

20.
The ability of Coxiella burnetii to modulate host cell death may be a critical factor in disease development. In this study, human monocytic THP-1 cells were used to examine the ability of C. burnetii Nine Mile phase II (NMII) to modulate apoptotic signaling. Typical apoptotic cell morphological changes and DNA fragmentation were detected in NMII infected cells at an early stage of infection. FACS analysis using Annexin-V-PI double staining showed the induction of a significant number of apoptotic cells at an early stage of NMII infection. Double staining of apoptotic cell DNA and intracellular C. burnetii indicates that NMII infected cells undergoing apoptosis. Interestingly, caspase-3 was not cleaved in NMII infected cells and the caspase-inhibitor Z-VAD-fmk did not prevent NMII induced apoptosis. Surprisingly, the caspase-3 downstream substrate PARP was cleaved in NMII infected cells. These results suggest that NMII induces apoptosis during an early stage of infection through a caspase-independent pathway in THP-1 cells. In addition, NMII-infected monocytes were unable to prevent exogenous staurosporine-induced apoptotic death. Western blot analysis indicated that NMII infection induced the translocation of AIF from mitochondria into the nucleus. Cytochrome c release and cytosol-to-mitochondrial translocation of the pore-forming protein Bax in NMII infected cells occurred at 24 h post infection. These data suggest that NMII infection induced caspase-independent apoptosis through a mechanism involving cytochrome c release, cytosol-to-mitochondrial translocation of Bax and nuclear translocation of AIF in THP-1 monocytes. Furthermore, NMII infection increased TNF-α production and neutralization of TNF-α in NMII infected cells partially blocked PARP cleavage, suggesting TNF-α may play a role in the upstream signaling involved in NMII induced apoptosis. Antibiotic inhibition of C. burnetii RNA synthesis blocked NMII infection-induced PARP activation. These results suggest that both intracellular C. burnetii replication and secreted TNF-α contribute to NMII infection-triggered apoptosis during an early stage of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号