首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

2.
The TNF-like cytokine TL1A augments IFN-gamma production by anti-CD3 plus anti-CD28 and IL-12/IL-18-stimulated peripheral blood (PB) T cells. However, only a small subset of PB T cells respond to TL1A stimulation with IFN-gamma production. PB CCR9+ T cells represent a small subset of circulating T cells with mucosal T cell characteristics and a Th1/Tr1 cytokine profile. In the current study, we show that TL1A enhanced IFN-gamma production by TCR- or CD2/CD28-stimulated CCR9(+)CD4+ PB T cells. However, TL1A had the most pronounced effect on augmenting IFN-gamma production by IL-12/IL-18-primed CCR9(+)CD4+ PB T cells. TL1A enhanced both the percentage and the mean fluorescence intensity of IFN-gamma in CCR9(+)CD4+ T cells as assessed by intracellular cytokine staining. IL-12 plus IL-18 up-regulated DR3 expression in CCR9(+)CD4+ T cells but had negligible effect on CCR9(-)CD4+ T cells. CCR9(+)CD4+ T cells isolated from the small intestine showed a 37- to 105-fold enhancement of IFN-gamma production when TL1A was added to the IL-12/IL18 cytokine combination. Cell membrane-expressed TL1A was preferentially expressed in CCR9(+)CD4+ PB T cells, and a blocking anti-TL1A mAb inhibited IFN-gamma production by cytokine-primed CCR9(+)CD4+ T cells by approximately 50%. Our data show that the TL1A/DR3 pathway plays a dominant role in the ultimate level of cytokine-induced IFN-gamma production by CCR9+ mucosal and gut-homing PB T cells and could play an important role in Th1-mediated intestinal diseases, such as Crohn's disease, where increased expression of IL-12, IL-18, TL1A, and DR3 converge in the inflamed intestinal mucosa.  相似文献   

3.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

4.
TL1A, a recently described TNF-like cytokine that interacts with DR3, costimulates T cells and augments anti-CD3 plus anti-CD28 IFN-gamma production. In the current study we show that TL1A or an agonistic anti-DR3 mAb synergize with IL-12/IL-18 to augment IFN-gamma production in human peripheral blood T cells and NK cells. TL1A also enhanced IFN-gamma production by IL-12/IL-18 stimulated CD56(+) T cells. When expressed as fold change, the synergistic effect of TL1A on cytokine-induced IFN-gamma production was more pronounced on CD4(+) and CD8(+) T cells than on CD56(+) T cells or NK cells. Intracellular cytokine staining showed that TL1A significantly enhanced both the percentage and the mean fluorescence intensity of IFN-gamma-producing T cells in response to IL-12/IL-18. The combination of IL-12 and IL-18 markedly up-regulated DR3 expression in NK cells, whereas it had minimal effect in T cells. Our data suggest that TL1A/DR3 pathway plays an important role in the augmentation of cytokine-induced IFN-gamma production in T cells and that DR3 expression is differentially regulated by IL-12/IL-18 in T cells and NK cells.  相似文献   

5.
Th1 and Th17 T cells are often colocalized in pathological environments, yet Th1-derived IFN-gamma inhibits Th17 cell development in vitro. We explored the physiologic basis of this paradox in humans. In this study, we demonstrate increased the number of CD4(+) and CD8(+) IL-17(+) T cells in skin lesions of psoriasis. Furthermore, we show that myeloid APCs potently support induction of IL-17(+) T cells, and that this activity is greatly increased in psoriasis. We tested stimuli that might account for this activity. Th1 cells and IFN-gamma are increased in psoriatic blood and lesional skin. We show that IFN-gamma programs myeloid APCs to induce human IL-17(+) T cells via IL-1 and IL-23. IFN-gamma also stimulates APC production of CCL20, supporting migration of IL-17(+) T cells, and synergizes with IL-17 in the production of human beta-defensin 2, an antimicrobial and chemotactic protein highly overexpressed by psoriatic keratinocytes. This study reveals a novel mechanistic interaction between Th1 and IL-17(+) T cells, challenges the view that Th1 cells suppress Th17 development through IFN-gamma, and suggests that Th1 and IL-17(+) T cells may collaboratively contribute to human autoimmune diseases.  相似文献   

6.
Yago T  Nanke Y  Kawamoto M  Yamanaka H  Kotake S 《Cytokine》2012,59(2):252-257
Tacrolimus (FK506, Prograf?) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from na?ve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection.  相似文献   

7.
The frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.B-17 SCID/bg mice and mediate the destruction of human endothelial cells (EC) in vascularized human skin grafts allogeneic to the T cell donor. In contrast, CD4+ T(CM) (CD45RO+ CCR7+ CD62L+) are inefficiently transferred and do not mediate EC injury. In vitro, CD4+ T(EM) secrete more IFN-gamma within 48 h in response to allogeneic ECs than do T(CM). In contrast, T(EM) and T(CM) secrete comparable amounts of IFN-gamma in response to allogeneic monocytes (Mo). In the same cultures, both T(EM) and T(CM) produce IL-2 and proliferate in response to IFN-gamma-treated allogeneic human EC or Mo, but T(CM) respond more vigorously in both assays. Blockade of LFA-3 strongly inhibits both IL-2 and IFN-gamma secretion by CD4+ T(EM) cultured with allogeneic EC but only minimally inhibits responses to allogeneic Mo. Blockade of CD80 and CD86 strongly inhibits IL-2 but not IFN-gamma production by in response to allogeneic EC or Mo. Transduction of EC to express B7-2 enhances allogeneic T(EM) production of IL-2 but not IFN-gamma. We conclude that human CD4+ T(EM) directly recognize and respond to allogeneic EC in vitro by secreting IFN-gamma and that this response depends on CD2 but not CD28. Consistent with EC activation of effector functions, human CD4+ T(EM) can mediate allogeneic EC injury in vivo.  相似文献   

8.
Delayed ICOS-B7h signal blockade promotes significant prolongation of cardiac allograft survival in wild-type but not in CD8-deficient C57BL/6 recipients of fully MHC-mismatched BALB/c heart allografts, suggesting the possible generation of CD8(+) regulatory T cells in vivo. We now show that the administration of a blocking anti-ICOS mAb results in the generation of regulatory CD8(+) T cells. These cells can transfer protection and prolong the survival of donor-specific BALB/c, but not third party C3H, heart grafts in CD8-deficient C57BL/6 recipients. This is unique to ICOS-B7h blockade, because B7 blockade by CTLA4-Ig prolongs graft survival in CD8-deficient mice and does not result in the generation of regulatory CD8(+) T cells. Those cells localize to the graft, produce both IFN-gamma and IL-4 after allostimulation in vitro, prohibit the expansion of alloreactive CD4(+) T cells, and appear to mediate a Th2 switch of recipient CD4(+) T cells after adoptive transfer in vivo. Finally, these cells are not confined to the CD28-negative population but express programmed death 1, a molecule required for their regulatory function in vivo. CD8(+)PD1(+) T cells suppress alloreactive CD4(+) T cells but do not inhibit the functions by alloreactive CD8(+) T cells in vitro. These results describe a novel allospecific regulatory CD8(+)PD1(+) T cell induced by ICOS-B7h blockade in vivo.  相似文献   

9.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

10.
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.  相似文献   

11.
12.
CD40 ligand (CD40L) is a membrane-bound molecule expressed by activated T cells. CD40L potently induces dendritic cell (DC) maturation and IL-12p70 secretion and plays a critical role during T cell priming in the lymph nodes. IFN-gamma and IL-4 are required for CD40L-mediated cytokine secretion, suggesting that T cells are required for optimal CD40L activity. Because CD40L is rapidly up-regulated by non-T cells during inflammation, CD40 stimulation may also be important at the primary infection site. However, a role for T cells at the earliest stages of infection is unclear. The present study demonstrates that the innate immune cell-derived cytokine, IL-1beta, can increase CD40L-induced cytokine secretion by monocyte-derived DC, CD34(+)-derived DC, and peripheral blood DC independently of T cell-derived cytokines. Furthermore, IL-1beta is constitutively produced by monocyte-derived DC and monocytes, and is increased in response to intact Escherichia coli or CD40L, whereas neither CD34(+)-derived DC nor peripheral blood DC produce IL-1beta. Finally, DC activated with CD40L and IL-1beta induce higher levels of IFN-gamma secretion by T cells compared with DC activated with CD40L alone. Therefore, IL-1beta is the first non-T cell-derived cytokine identified that enhances CD40L-mediated activation of DC. The synergy between CD40L and IL-1beta highlights a potent, T cell-independent mechanism for DC activation during the earliest stages of inflammatory responses.  相似文献   

13.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

14.
We investigated whether the proinflammatory T cell cytokines IL-17 and IL-22 are induced by human mycobacterial infection. Remarkably, >20% of specific cytokine-producing CD4(+) T cells in peripheral blood of healthy, mycobacteria-exposed adults expressed IL-17 or IL-22. Specific IL-17- and IL-22-producing CD4(+) T cells were distinct from each other and from Th1 cytokine-producing cells. These cells had phenotypic characteristics of long-lived central memory cells. In patients with tuberculosis disease, peripheral blood frequencies of these cells were reduced, whereas bronchoalveolar lavage fluid contained higher levels of IL-22 protein compared with healthy controls. IL-17 was not detected in this fluid, which may be due to suppression by Th1 cytokines, as PBMC IL-17 production was inhibited by IFN-gamma in vitro. However, Th1 cytokines had no effect on IL-22 production in vitro. Our results imply that the magnitude and complexity of the anti-mycobacterial immune response have historically been underestimated. IL-17- and IL-22-producing CD4(+) T cells may play important roles in the human immune response to mycobacteria.  相似文献   

15.
16.
17.
Regulation of IL-17 in human CCR6+ effector memory T cells   总被引:1,自引:0,他引:1  
IL-17-secreting T cells represent a distinct CD4(+) effector T cell lineage (Th17) that appears to be essential in the pathogenesis of numerous inflammatory and autoimmune diseases. Although extensively studied in the murine system, human Th17 cells have not been well characterized. In this study, we identify CD4(+)CD45RO(+)CCR7(-)CCR6(+) effector memory T cells as the principal IL-17-secreting T cells. Human Th17 cells have a unique cytokine profile because the majority coexpress TNF-alpha but not IL-6 and a minor subset express IL-17 with IL-22 or IL-17 and IFN-gamma. We demonstrate that the cytokines that promote the differentiation of human naive T cells into IL-17-secreting cells regulate IL-17 production by memory T cells. IL-1beta alone or in association with IL-23 and IL-6 markedly increase IL-17(+) CCR6(+) memory T cells and induce IL-17 production in CCR6(-) memory T cells. We also show that T cell activation induces Foxp3 expression in T cells and that the balance between the percentage of Foxp3(+) and IL-17(+) T cells is inversely influenced by the cytokine environment. These studies suggest that the cytokine environment may play a critical role in the expansion of memory T cells in chronic autoimmune diseases.  相似文献   

18.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

19.
IL-4 specifically induced IgE production by peripheral blood lymphocytes or by tonsil or spleen cells from healthy donors. IL-4-induced IgE synthesis was dependent on CD4+ T cells and monocytes and was blocked by IFN-gamma, IFN-alpha, and prostaglandin E-2 (PGE-2). These substances also inhibited IL-4-induced CD23 expression and subsequent release of soluble CD23 (s-CD23). In addition, IgE production was blocked by F(ab')2 fragments of an mAb against CD23. In contrast, IL-5 enhanced IL-4-induced IgE production, provided IL-4 was added at nonsaturating concentrations. This increase in IgE production correlated quantitatively with an enhanced release of s-CD23. Collectively, these results indicate that there is a correlation between s-CD23 release and IgE production. However, s-CD23 fractionated from supernatants of the lymphoblastoid cell line RPMI-8866 was ineffective in inducing IgE production in the absence of IL-4, but acted synergistically with suboptimal concentrations of IL-4. In addition, it is demonstrated that alloreactive T-cell clones produced varying concentrations of IL-4, IL-2, or IFN-gamma upon stimulation. Only supernatants of 2/4 of these T-cell clones induced a low degree of IgE synthesis, but in the presence of anti-IFN-gamma antibodies, all four supernatants induced a strong induction of IgE production. This IgE synthesis was blocked specifically by anti-IL-4 antibodies, indicating that IL-4 is the sole inducer of IgE synthesis. Our findings demonstrate that IL-4-induced IgE production involves complex interactions of T cells, B cells, and monocytes and is positively modulated by IL-5 and s-CD23 but down-regulated by IFN-gamma, IFN-alpha, and PGE-2, respectively.  相似文献   

20.
The recently delineated role for IL-23 in enhancing Th-17 activity suggests that regulation of its expression is distinct from that of IL-12. We hypothesized that independent TLR-mediated pathways are involved in the regulation of IL-12 and IL-23 production by myeloid-derived dendritic cells (DCs). The TLR 2 ligand, lipoteichoic acid (LTA), the TLR 4 ligand, LPS, and the TLR 7/8 ligand, resimiquod (R848), induced production of IL-23 by DCs. None of these TLR ligands alone induced significant IL-12 production, except when combined with IFN-gamma or other TLR ligands. Notably, IL-23 production in response to single TLR ligands was inhibited by IL-4. DCs treated with single TLR agonists induced IL-17A production by allogeneic and Ag-specific memory CD4(+) T cells, an effect that was abrogated by IL-23 neutralization. Moreover, these DCs stimulated IL-17A production by tumor peptide-specific CD8(+) T cells. In contrast, DCs treated with dual signals induced naive and memory Th1 responses and enhanced the functional avidity of tumor-specific CD8(+) T cells. These results indicate that distinct microbial-derived stimuli are required to drive myeloid DC commitment to IL-12 or IL-23 production, thereby differentially polarizing T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号