首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

3.
 The interactions of five copper-containing amine oxidases with substrates and substrate analogues in the presence of the copper ligands cyanide, azide, chloride, and 1,10-phenanthroline have been investigated. While cyanide inhibits, to varying degrees, the reaction of phenylhydrazine with porcine kidney amine oxidase (PKAO), porcine plasma amine oxidase (PPAO), bovine plasma amine oxidase (BPAO), and pea seedling amine oxidase (PSAO), it enhances the reaction of Arthrobacter P1 amine oxidase (APAO) with this substrate analogue. This indicates that cyanide exerts an indirect effect on topa quinone (TPQ) reactivity via coordination to Cu(II) rather than through cyanohydrin formation at the TPQ organic cofactor. Moreover, cyanide binding to the mechanistically relevant TPQ semiquinone form of substrate-reduced APAO and PSAO was not observable by EPR or resonance Raman spectroscopy. Hence, cyanide most likely inhibits enzyme reoxidation by binding to Cu(I) and trapping the Cu(I)-TPQ form of amine oxidases, and thus preventing the reaction of O2 with Cu(I). In contrast, ligands such as azide, chloride, and 1,10-phenanthroline, which preferentially bind to Cu(II), inhibit by stabilizing the aminoquinol Cu(II)-TPQred redox state, which is in equilibrium with Cu(I)-TPQ. Received: 12 December 1996 / Accepted: 20 March 1997  相似文献   

4.
The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.  相似文献   

5.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

6.
7.
Phenogenetic studies of four symbiotic hypernodulating mutants of pea (Pisum sativum L.) induced from seeds of cultivar Rodno by chemical mutagen EMS were conducted. All mutants have improved symbiotic traits, i.e., an increased number of root nitrogen fixating nodules and high activity of nitrogenase. Symbiotic traits were shown to be inherited dominantly. Mutants grown in the field or in a greenhouse showed superiority over the original cultivar in productivity. An important feature of hypernodulating mutants was found that is responsible for the appearance of high-height productive plants in F2 after crossing mutants and the original cultivar. Constant lines retaining the ability for high-level production up to the F5 generation were created based on individual plants.  相似文献   

8.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

9.
10.
The location of rRNA processing was analyzed by usingin situ hybridization with ITS1 probe and immunolabeling of anti-fibrillarin mAb in pea (Pisum sativum) root pole cells. The results showed that rRNA processing sites were in dense fibrillar components (DFCs) and granular components (GCs), but not in fibrillar centers (FCs). Low doses of actinomycin D (AMD) treatment can selectively suppress pre-rRNA synthesis but cannot disturb the processing of preformed pre-rRNAs. With AMD treatment prolonged, the density of labeled signals gradually decreased, indicating the preformed pre-rRNAs were gradually processed.  相似文献   

11.
Long-term pea callus cultures of different genotypes (mutants R-9 and W-1 and cultivar Viola) were used to regenerate plants (generation R0). The regenerants displayed changes both in qualitative and in quantitative traits. The most dramatic morphological alterations and complete sterility were observed in regenerants of the cultivar Viola. To estimate the genetic differences, regenerants were compared with the original lines with the use of RAPD (random amplified polymorphic DNA) and ISSR (inter simple sequence repeat) analyses. The extent of divergence varied among regenerants and depended mostly on the original genotype. The genetic difference from the original line was no more than 1% in W-1 regenerants, 0.7–5.3% in R-9 regenerants, and 10–15% in sterile regenerants of the cultivar Viola. The genetic variation of plants regenerated from a callus culture maintained for ten years did not exceed that of plants obtained from a culture maintained for two years.Translated from Genetika, Vol. 41, No. 1, 2005, pp. 71–77.Original Russian Text Copyright © 2005 by Kuznetsova, Ash, Hartina, Gostimskij.  相似文献   

12.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

13.
The Lotus japonicus LjSYM2 gene, and the Pisum sativum orthologue PsSYM19, are required for the formation of nitrogen-fixing root nodules and arbuscular mycorrhiza. Here we describe the map-based cloning procedure leading to the isolation of both genes. Marker information from a classical AFLP marker-screen in Lotus was integrated with a comparative genomics approach, utilizing Arabidopsis genome sequence information and the pea genetic map. A network of gene-based markers linked in all three species was identified, suggesting local colinearity in the region around LjSYM2/PsSYM19. The closest AFLP marker was located just over 200 kb from the LjSYM2 gene, the marker SHMT, which was converted from a marker on the pea map, was only 7.9 kb away. The LjSYM2/PsSYM19 region corresponds to two duplicated segments of the Arabidopsis chromosomes AtII and AtIV. Lotus homologues of Arabidopsis genes within these segments were mapped to three clusters on LjI, LjII and LjVI, suggesting that during evolution the genomic segment surrounding LjSYM2 has been subjected to duplication events. However, one marker, AUX-1, was identified based on colinearity between Lotus and Arabidopsis that mapped in physical proximity of the LjSym2 gene.Communicated by J.S. Heslop-Harrison  相似文献   

14.
Metabolic profiling is a key approach in current basic and applied research in biology. Comparative analysis of different metabolite extraction methods for pea (P. sativum) and black medick (M. lupulina) made it possible to find the optimal conditions for metabolite extraction and subsequent detection by gas chromatography coupled with mass spectrometry. The optimized method was shown to be reliable for assessment of the organ and species metabolic profiles for roots and leaves in pea and black medick plants.  相似文献   

15.
The colony-forming ability of long (3–9 months) incubated cystlike resting cells (CRC) of the nonspore-forming gram-positive bacteria Micrococcus luteus and Arthrobacter globiformis was studied in this work. The preservation of the CRC proliferative potential as assayed by plating on standard LB agar was shown to depend on the conditions of the formation of the dormant cells. In aged post-stationary cultures of micrococci and arthrobacters grown under carbon and phosphorus limitation the number of colony-forming units (CFU/ml) of CRC decreased in the course of 3–9 month incubation to the level of 106–107 CFU/ml. However, M. luteus CRC obtained under carbon and nitrogen limitation and A. globiformis CRC obtained under nitrogen limitation and starvation completely lost their ability to form colonies on standard solid medium after 4–6 months of incubation and turned into a ‘non-culturable’ (non-platable) state. In this case, the ratio of live cells in the population of M. luteus and A. globiformis ‘non-culturable’ CRCs (determined by the Live/Dead staining test) was 10–44% of the total cell number. To study the possible preservation of proliferative potential in non-platable CRCs, various methods of their reactivation were applied. Although preincubation of CRC suspensions in a buffer solution of 0.1 M K2HPO4 (pH 7.4) or in the presence of lysozyme (1 or 10 μg/ml) resulted in increased numbers of live cells (determined by the Live/Dead test) or in disruption of the cell conglomerates, it did not increase considerably the CFU titer on LB medium. Variations in the medium composition, such as addition of sodium pyruvate as an antioxidant or dilution of the medium, promoted the formation of macrocolonies by a small portion of nonplateable CRC of M. luteus (50?80 CFU/ml), whereas the number of the cells capable of microcolony formation (mCFU) was 1.8–6.8 × 105 mCFU/ml, exceeding the CFU titers by four orders of magnitude. The application of semisolid agar and the most probable number (MPN) method was the most efficient for determination of the mCFU titer, and an almost complete reversion of ‘non-culturable’ micrococcal CRCs to microcolony formation was observed (up to 2.3 × 107 mCFU/ml). The usefulness of diluted complete media for the restoration of the colony-forming ability of the dormant forms was confirmed in experiments with ‘nonculturable’ CRCs of A. globiformis. The development of special procedures and methods for determining actively proliferating cells not detected by ordinary methods is of great importance for advanced monitoring studies.  相似文献   

16.
A recent study of apical dominance in isolated rhizomes of Agropyron repens L. Beauv. suggested that inhibition of the lateral buds by the rhizome apex largely depends on the supply of water, nitrogen and carbohydrate, any of which could act as a limiting factor and thus determine the degree of inhibition1. To test this hypothesis, further experiments were conducted with peas (Pisum sativum, variety ‘Alaska’), which exhibit strong apical dominance and which are widely used in the study of this phenomenon2. The results agreed well with the concept of limiting nutritional factors and suggest that for this species water stress may be particularly significant.  相似文献   

17.
Amine oxidase (AO) from 4-d-old seedlings of Papaver somniferum L. (Papaveraceae) was purified (58-fold) by using ammonium sulphate precipitation and chromatography on Sephadex G-150 and HA-Ultrogel columns. The most readily oxidized substrate was tyramine and other aromatic amines, while aliphatic amines cadaverine and putrescine were oxidized more slowly. Cu chelating and carbonyl reagents are the most effective inhibitors of poppy amine oxidase. Immunoblotting analysis showed cross reactivity of AO protein from poppy seedlings with polyclonal antisera against AO from pea. Obtained Mr value for AO from poppy (83 kDa) corresponds to that of copper AOs (75 – 90 kDa). These results suggest that the amine oxidase from poppy seedlings is a copper containing and tyramine specific AO.This work was supported by the grant of Slovak Grant Agency (VEGA 1/1197/04) and by the Comenius University, Faculty of Pharmacy Grant (FaF UK/1191/2002).  相似文献   

18.
Total protein patterns were studied in the course of development of pea somatic embryos using simple protocol of direct regeneration from shoot apical meristems on auxin supplemented medium. Protein content and total protein spectra (SDS-PAGE) of somatic embryos in particular developmental stages were analysed in Pisum sativum, P. arvense, P. elatius and P. jomardi. Expression of seed storage proteins in somatic embryos was compared with their accumulation in zygotic embryos of selected developmental stages. Pea vegetative tissues, namely leaf and root, were used as a negative control not expressing typical seed storage proteins. The biosynthesis and accumulation of seed storage proteins was observed during somatic embryo development (since globular stage), despite of the fact that no special maturation treatment was applied. Major storage proteins typical for pea seed (globulins legumin, vicilin, convicilin and their subunits) were detected in somatic embryos. In general, the biosynthesis of storage proteins in somatic embryos was lower as compared to mature dry seed. However, in some cases the cotyledonary somatic embryos exhibited comparatively high expression of vicilin, convicilin and pea seed lectin, which was even higher than those in immature but morphologically fully developed zygotic embryos. Desiccation treatments did not affect the protein content of somatic embryos. The transfer of desiccated somatic embryos on hormone-free germination medium led to progressive storage protein degradation. The expression of true seed storage proteins may serve as an explicit marker of somatic embryogenesis pathway of regeneration as well as a measure of maturation degree of somatic embryos in pea.  相似文献   

19.
A possible physiological mechanism of legume-Rhizobium symbiosis, consisting in regulation of the intensity of oxidative processes by the macrosymbiont in response to infection with Rhizobium, was analyzed using our own and published data. The results used in the analysis included data on the content of reactive oxygen species (O 2 ·? and H2O2), activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), and intensity of lipid peroxidation proceeding with the involvement of lipophilic phenolic compounds of the microsymbiont.  相似文献   

20.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号