首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Muga  H H Mantsch  W K Surewicz 《Biochemistry》1991,30(10):2629-2635
Apocytochrome c, the heme-free precursor of cytochrome c, has been used extensively as a model to study molecular aspects of posttranslational translocation of proteins across membranes. In this report, we have used Fourier-transform infrared spectroscopy to gain further insight into the mechanism of apocytochrome c interaction with membrane phospholipids. Association of apocytochrome c with model membranes containing the acidic lipid dimyristoylphosphatidylglycerol (DMPG) as a single component results in a drastic perturbation of phospholipid structure, at the level of both the acyl chains and the interfacial carbonyl groups. However, in a binary mixture of DMPG with acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54), the perturbing effect of the protein on the acidic phospholipid is greatly attenuated. In such a membrane with mixed lipids, the physical properties of the DMPG and DMPC components are affected in a similar fashion, indicating that apocytochrome c does not induce any significant segregation or lateral-phase separation of acidic and zwitterionic lipids. Analysis of the apocytochrome c spectrum in the amide I region reveals that binding to phospholipids causes considerable changes in the secondary structure of the protein, the final conformation of which depends on the lipid to protein ratio. In the presence of a large excess of DMPG, apocytochrome c undergoes a transition from an essentially unordered conformation in solution to an alpha-helical structure. However, in complexes of lower lipid to protein ratios (less than or equal to approximately 40:1), infrared spectra are indicative of an extended, intermolecularly hydrogen-bonded beta-sheet structure. The latter is suggestive of an extensive aggregation of the membrane-associated protein.  相似文献   

2.
R B Spruijt  M A Hemminga 《Biochemistry》1991,30(46):11147-11154
The major coat protein of bacteriophage M13 has been reconstituted into phospholipids with a composition comparable to that found in the host (Escherichia coli) inner membrane. Reconstitution experiments have revealed conditions in which the alpha-oligomeric state is favored over the beta-polymeric state. Discrimination between the two states of the membrane-bound coat protein (alpha-oligomeric and beta-polymeric states) has been achieved using high-performance size-exclusion chromatography and circular dichroism. Interprotein electrostatic interactions, probably induced by head-tail binding, are initiated and facilitating the aggregation-related conformational change process, in which alpha-oligomeric coat protein is converted into beta-polymeric coat protein. A model for this beta-polymerization process of the coat protein is presented. The alpha-helical protein has been studied by the in situ Trp fluorescence quantum yield. This shows that the average distances between coat proteins decrease upon lowering the L/P ratio. In situ cross-linking reactions of the coat protein at high L/P ratios reveal a monomeric state, thus excluding specific aggregation of the coat protein. A monomeric state of detergent-solubilized coat protein is also observed using SDS-PAGE and SDS-HPSEC. On the basis of these results, the smallest in situ aggregational entity of the coat protein is proposed to be a monomer. This finding is discussed in relation to the functional state of the M13 coat protein in the membrane-bound assembly and disassembly processes during infection.  相似文献   

3.
J L Soulages  E L Arrese 《Biochemistry》2001,40(47):14279-14290
Quenching of tryptophan fluorescence by nitroxide-labeled phospholipids and nitroxide-labeled fatty acids was used to investigate the lipid-binding domains of apolipophorin III. The location of the Trp residues relative to the lipid bilayer was investigated in discoidal lipoprotein particles made with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and five different single-Trp mutants of apoLp-III. A comparison of the quenching efficiencies of phospholipids containing nitroxide groups at the polar head, and at positions 5 and 16 of the sn-2 acyl chain, indicated that the protein is interacting with the acyl chains of the phospholipid along the periphery of the bilayer of the discoidal lipoprotein. N-Bromosuccinimide readily abolished 100% of the fluorescence of all Trp residues in the lipid-bound state. Larger quenching rates were observed for the Trp residues in helices 1, 4, and 5 than for those located in helices 2 and 3, suggesting differences between the interaction of these two groups of helices. However, the extent of Trp fluorescence quenching observed in lipoproteins made with any of the mutants was comparable to that reported for deeply embedded Trp residues, suggesting that all Trp residues interact with the phospholipid acyl chains. This study provides the first experimental evidence of a massive interaction of the alpha-helices of apoLp-III with the phospholipid acyl chains in discoidal lipoproteins. The extent of interaction deduced is consistent with the apolipoprotein adopting a highly extended conformation.  相似文献   

4.
SecA protein, a principal component of the protein export machinery of Escherichia coli, is found both in the cytoplasm and inner membrane of cells. Previous in vitro and in vivo studies demonstrated that the interaction of SecA with the inner membrane requires the presence of physiological levels of anionic (acidic) phospholipids. In this report the degree of SecA insertion into model membranes and the conformational changes associated with this event have been examined. The extent of association of SecA with model membranes was determined by photolabeling with a hydrophobic reagent, and the depth of insertion of the protein into the phospholipid bilayer was determined by the amount of quenching of SecA fluorescence by both brominated and spin-labeled phospholipids. These methods demonstrated that SecA penetrates deep within the acyl chain region of the phospholipid bilayer. It was also found that SecA penetration into vesicles was associated with a major conformational change in the protein. This change can be induced by higher temperatures and involves a partial unfolding event as judged by differential scanning calorimetry, SecA fluorescence and increased sensitivity to proteolysis. These properties suggest the induction of a molten-globule-like conformation in a portion of the SecA polypeptide. This change was also induced at lower temperatures by the presence of membranes containing a physiological amount of the anionic phospholipid, phosphatidylglycerol. The partial unfolding and concomitant deep insertion of SecA into membranes may aid in the insertion of precursor proteins into the inner membrane and may influence possible interactions between SecA and the integral membrane export machinery components.  相似文献   

5.
The effect of amphiphilic toxin melittin (Mel) on the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) has been studied by Raman spectroscopy. The spectra show that for complexes that were incubated above 40 degrees C, melittin does not penetrate DPPC bilayers in the gel state as an intrinsic protein since the conformation of the lipid acyl chains is just slightly perturbed by the toxin. Instead, at the DPPC/Mel molar ratios investigated (Ri = 5 and 15), Raman results suggest the formation of discoidal particles as complexes of apolipoproteins with phosphatidylcholines. These lipid/protein assemblies are characterized by a high conformational order, low intermolecular chain-chain interactions due to the size of the particles, and a low cooperativity of the gel to liquid-crystalline transition. The latter is biphasic for samples studied. It is believed that aggregation of these particles into larger ones occurs when the bilayers become less stable at higher temperature and that melittin is partially embedded into the hydrophobic core of the larger lipid/protein units. The freezing of the dispersion at approximately 0 degrees C also causes a reversible aggregation of the particles that leads to the formation of domains in which the interchain interactions are very similar to that of the pure lipid. The small particles of DPPC/Mel are also metastable, and with time, they form larger aggregates from which melittin is expulsed.  相似文献   

6.
Mono- and dimethylated derivatives constitute important intermediates in the conversion of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in eucaryote membranes. 1H-NMR techniques were utilized to examine the conformation of the region of the fatty acyl chains that is close to the polar group in the series of alpha-phospholipids: PE, N-methyl-PE, N,N-dimethyl-PE, and PC. The same series of polar groups, but on phospholipid containing sn-1 and/or sn-3 fatty acyl chains (beta-phospholipids) were also examined. All of the phospholipids were in the form of small sonicated vesicles which are widely utilized as membrane models. The alpha-methylene group of the sn-1 and sn-2 fatty acyl chains of the alpha-phospholipids give rise to separate signals due to the non-equivalency of these chains with respect to the glycerol phosphate backbone on all alpha-phospholipids tested. Additionally, differences in the environment of the PC molecules as well as N-methyl-PE, and N,N-dimethyl-PE, but not PE itself on the inside and outside of the vesicles are reflected in the chemical shift of the alpha-methylene protons. On the other hand, all of the beta-phospholipids (including beta-PE) were found to reflect the inside/outside packing differences in their alpha-methylene groups. The bilayer packing does not induce any nonequivalence in the chemically equivalent acyl chains. In mixed micelles with detergents, beta-phospholipids showed one alpha-CH2 signal for all phospholipids. These results are consistent with a common conformational arrangement for the fatty acyl chains in all alpha-phospholipids that have been investigated no matter what aggregated form. The conformational arrangement in the beta-phospholipids is different, but again is similar for all of the compounds tested in various aggregated forms.  相似文献   

7.
The influence of charged phospholipid membranes on the conformational state of the water-soluble fragment of cytochrome b5 has been investigated by a variety of techniques at neutral pH. The results of this work provide the first evidence that aqueous solutions with high phospholipid/protein molar ratios (pH 7.2) induce the cytochrome to undergo a structural transition from the native conformation to an intermediate state with molten-globule like properties that occur in the presence of an artificial membrane surface and that leads to binding of the protein to the membrane. At other phospholipid/protein ratios, equilibrium was observed between cytochrome free in solution and cytochrome bound to the surface of vesicles. Inhibition of protein binding to the vesicles with increasing ionic strength indicated for the most part an electrostatic contribution to the stability of cytochrome b5-vesicle interactions at pH 7.2. The possible physiological role of membrane-induced conformational change in the structure of cytochrome b5 upon the interaction with its redox partners is discussed.  相似文献   

8.
Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes.  相似文献   

9.
Binding of cytochrome c (cyt c) to fatty acids and acidic phospholipid membranes produces pronounced and essentially identical changes in the spectral properties of cyt c, revealing conformational changes in the protein. The exact mechanism of the interaction of fatty acids and acidic phospholipids with cyt c is unknown. Binding of cyt c to liposomes with high contents (mole fraction X > 0.7) of acidic phospholipids caused spectral changes identical to those due to binding of oleic acid. Fluorescence spectroscopy of a cyt c analog containing a Zn(2+) substituted heme moiety and brominated lipid derivatives (9,10)-dibromostearate and 1-palmitoyl-2-(9,10)-dibromo-sn-glycero-3-phospho-rac-glycerol demonstrated a direct contact between the fluorescent [Zn(2+)-heme] group and the brominated acyl chain. These data constitute direct evidence for interaction between an acyl chain of a membrane phospholipid and the inside of the protein containing the heme moiety and provide direct evidence for the so-called extended-lipid anchorage of cyt c to phospholipid membranes. In this mechanism, one of the phospholipid acyl chains protrudes out of the membrane and intercalates into a hydrophobic channel in cyt c while the other chain remains in the bilayer.  相似文献   

10.
The phospholipid composition of the butyric acid-producing clostridia is responsive to the degree of enrichment of the lipids with cis-unsaturated fatty acids. When Clostridium butyricum and Clostridium beijerinckii are grown on oleic acid in media devoid of biotin, the acyl and alk-1-enyl chains of the phospholipids become highly enriched with 18:1 and C19-cyclopropane. Under these conditions there is a marked increase in the glycerol acetals of the major plasmalogens of these organisms. We have grown both species on mixtures of palmitate and oleate in the absence of biotin. The alk-1-enyl chains were highly enriched with C18-unsaturated and C19-cyclopropane residues at all but the highest ratios of palmitate to oleate (80:20, w/w) added to the medium. At ratios of palmitate to oleate greater than or equal to 40:60, the saturated acid was incorporated predominantly into the phospholipid acyl chains in both organisms. The effects of increasing unsaturation of the acyl chains as the ratio of oleate to palmitate was increased was examined in C. butyricum. In cells grown on mixtures of palmitate and oleate equal to or exceeding 40% palmitate, the ratio of glycerol acetal lipid to total phosphatidylethanolamine (PE) was relatively constant. As the proportion of oleic acid added to the medium was increased, the ratio of glycerol acetal lipid to PE increased from 0.7 to 2.0. Thus the ratio of the polar lipids appears to respond to the content of phospholipids that contain two unsaturated chains. The fraction of PE present as plasmalogen remained relatively stable (0.82 +/- 0.05) at varying ratios of medium oleic and palmitic acids. Both the glycerol acetal of ethanolamine plasmalogen, and ethanolamine plasmalogen, are shown to be 80% or more in the outer monolayer of the cell membrane. These two polar lipids represent approx. 50% of the phospholipids in cells grown on exogenous fatty acid. The bulk of the remainder is polyglycerol phosphatides. We suggest that the ability of both species to grow with highly unsaturated membranes is related to their ability to modulate their polar lipid composition.  相似文献   

11.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

12.
The integral membrane protein, sn-glycerol-3-phosphate acyltransferase, catalyzes the first committed step in phospholipid synthesis, and both acyl-CoA and acyl-acyl carrier protein can be used as acyl donors in this reaction. We found that spermidine increased the specific activity of the acyltransferase when either substrate was used as the acyl donor. Magnesium, as well as other cations, also increased acyltransferase activity but were not nearly as effective as spermidine. Two roles for spermidine in this reaction were deduced from our data. First, spermidine dramatically lowered the Km for glycerol 3-phosphate resulting in an overall rate enhancement when either substrate was used as the acyl donor. This effect was attributed to the modification of the acyl-transferase environment due to the binding of spermidine to membrane phospholipids. A second effect of spermidine was evident only when acyl-acyl carrier protein was used as substrate. Using this acyl donor, a pH optimum of 7.5 was found in the absence of spermidine, but in its presence, the pH optimum was shifted to 8.5. Between pH 7.5 and 8.5, palmitoyl-acyl carrier protein undergoes a conformational change to a more expanded, denatured state and its activity in the acyltransferase assay decreases dramatically. Spermidine restored the native conformation of palmitoyl-acyl carrier protein at pH 8.5, thus accounting for the majority of rate enhancement observed at elevated pH.  相似文献   

13.
To address the role of phospholipids in the topological organization of polytopic membrane proteins, the function and assembly of lactose permease (LacY) was studied in mutants of Escherichia coli lacking phosphatidylethanolamine (PE). PE is required for the proper conformation and active transport function of LacY. The N-terminal half of LacY assembled in PE-lacking cells adopts an inverted topology in which normally non-translocated domains are translocated and vice versa. Post-assembly synthesis of PE triggers a conformational change, resulting in a lipid-dependent recovery of normal conformation and topology of at least one LacY subdomain accompanied by restoration of active transport. These results demonstrate that membrane protein topology once attained can be changed in a reversible manner in response to alterations in phospholipid composition, and may be subject to post-assembly proofreading to correct misfolded structures.  相似文献   

14.
The association of the major coat protein of fd bacteriophage with a phospholipid bilayer was investigated by analyzing the protein's susceptibility to proteolysis and its circular dichroism spectrum when incorporated into single-walled phospholipid vesicles. In the limits tested, this association appeared to be independent of the mass ratio of protein to lipid and of vesicle size, phospholipid composition, and method of preparation. The circular dichroism data are consistent with a similar "membrane-bound" conformation for all cases of vesicle-associated coat protein and for deoxycholate micelle-associated coat protein. Proteolysis of coat protein associated with deoxycholate micelles and with phospholipid vesicles defined the central hydrophobic core presumed to represent that portion of the protein which associates with membrane bilayers in vivo. The isolated core, which assumed a predominantly beta-type conformation in detergent solution, maintained a beta conformation when associated with a vesicle phospholipid bilayer.  相似文献   

15.
The thermotropic behavior of intact bovine lung surfactant and its hydrophobic extract has been monitored via the temperature dependence of the 2850 cm-1 phospholipid acyl chain CH2 symmetric stretching frequencies in the IR spectrum. A broad, reversible, melting event was noted from about 15 to 40 degrees C in both the lipid extract and the native surfactant. Slight protein-induced disordering of the lipid acyl chains was evident. The melting event was confirmed by differential scanning calorimetry. The major surfactant protein, a 30-36-kDa class of glycoprotein (SP-A), has been isolated from bovine lung lavage and purified by affinity chromatography. SP-A was reconstituted into a binary lipid mixture of acyl chain perdeuterated dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC-d62/DPPG, 85:15 w/w), a ratio which approximates that in surfactant. Use of DPPC-d62 permitted the FT-IR determination of the effect of protein on the thermotropic behavior of individual phospholipids in the binary mixture. High levels of SP-A induced an ordering of the phospholipids, as shown by an increase in the transition temperature of DPPC-d62 compared to the lipid model. In contrast, a mixture of the other surfactant proteins induced a progressive disordering of the phospholipids and disruption of the cooperativity of the melting event. Transition widths of about 3 degrees, 9 degrees, and 27 degrees were noted for protein:lipid ratios of 0, 1:1, and 2:1 (w/w), respectively. Possible roles for the various proteins in surfactant function are discussed in light of these data.  相似文献   

16.
The interaction of the polypeptide hormone calcitonin with two acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA), was investigated by Fourier-transform infrared spectroscopy. The association of calcitonin with DMPG results in a broadening of the lipid phase transition, accompanied by a marked decrease in the conformational order of the acyl chains at temperatures below the phase transition region. Infrared bands due to carbonyl ester and phosphate group vibrations of DMPG molecules are not significantly affected by the presence of calcitonin. The effect of calcitonin on the conformation of acyl chains in DMPA is much smaller compared with DMPG. The different susceptibility of DMPG and DMPA to perturbation by calcitonin is suggested to be related to different degrees of intermolecular interactions between the headgroups of these two phospholipids.  相似文献   

17.
Granjon T  Vacheron MJ  Vial C  Buchet R 《Biochemistry》2001,40(20):6016-6026
Structural modifications induced by the binding of mitochondrial creatine kinase (mtCK) to saturated and unsaturated phospholipids were monitored by using Laurdan, a membrane probe sensitive to the polarity of the environment. The abrupt change characteristic of a phase transition of lipids alone was attenuated by addition of mtCK. Generalized polarization spectra indicated that mtCK surface binding changed the phospholipid liquid-crystalline state to a more rigid state. Infrared spectra of lipids further strengthened these results: upon mtCK binding, the phospholipid methylene chains had a more rigid conformation than that observed without mtCK at the same temperature. After mtCK binding to vesicles of perdeuterated dimyristoylphosphatidylcholine and nondeuterated dimyristoylphosphatidylglycerol, no lateral phase separation was observed, suggesting that both lipids were rigidified. Moreover, mtCK bound to liposomes exhibited an uncommon red edge excitation shift of 19 nm, while that of the soluble enzyme was only 6 nm. These results indicated that the environment of some mtCK tryptophan residues was motionally restricted. Strong stabilization of the enzyme structure against heat denaturation was observed upon lipid binding. In addition, lipids promoted a new reversible protein-protein or protein-lipid interaction, as evidenced by infrared data showing a slight modification of the beta sheet over alpha helix ratio with formation of a new 1632-cm(-)(1) beta sheet instead of the soluble protein 1636-cm(-)(1) one. Such modifications, inducing a decrease in the fluidity of the mitochondrial membranes, may play a role in vesicle aggregation; they could be implicated in the appearance of contact sites between internal and external mitochondrial membranes.  相似文献   

18.
Zhang Y  Lu W  Hong M 《Biochemistry》2010,49(45):9770-9782
Defensins are cationic and disulfide-bonded host defense proteins of many animals that target microbial cell membranes. Elucidating the three-dimensional structure, dynamics, and topology of these proteins in phospholipid bilayers is important for understanding their mechanisms of action. Using solid-state nuclear magnetic resonance spectroscopy, we have now determined the conformation, dynamics, oligomeric state, and topology of a human α-defensin, HNP-1, in DMPC/DMPG bilayers. Two-dimensional correlation spectra show that membrane-bound HNP-1 exhibits a conformation similar to that of the water-soluble state, except for the turn connecting strands β2 and β3, whose side chains exhibit immobilization and conformational perturbation upon membrane binding. At high protein/lipid ratios, rapid (1)H spin diffusion from the lipid chains to the protein was observed, indicating that HNP-1 was well inserted into the hydrocarbon core of the bilayer. Arg Cζ-lipid (31)P distances indicate that only one of the four Arg residues forms tight hydrogen-bonded guanidinium-phosphate complexes. The protein is predominantly dimerized at high protein/lipid molar ratios, as shown by (19)F spin diffusion experiments. The presence of a small fraction of monomers and the shallower insertion at lower protein concentrations suggest that HNP-1 adopts concentration-dependent oligomerization and membrane-bound structure. These data strongly support a "dimer pore" topology of HNP-1 in which the polar top of the dimer lines an aqueous pore while the hydrophobic bottom faces the lipid chains. In this structure, R25 lies closest to the membrane surface among the four Arg residues. The pore does not have a high degree of lipid disorder, in contrast to the toroidal pores formed by protegrin-1, a two-stranded β-hairpin antimicrobial peptide. These results provide the first glimpse into the membrane-bound structure and mechanism of action of human α-defensins.  相似文献   

19.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

20.
Vinculin-lipid monolayer interactions: a model for focal contact formation   总被引:1,自引:0,他引:1  
Vinculin-lipid interactions were investigated in a modified Langmuir trough. Provided proper conditions, vinculin had the potential to penetrate into phospholipid monolayers and to form rigid, cohesive protein films even at phospholipid monolayer pressures similar to those assumed to exist in living cell membranes. The equilibrium constant for this reaction was estimated to be on the order of 2.5 X 10(-9) to 2.2 X 10(-7) mol/liter (for pressures between 25 and 35 mN/m). Penetration velocity depended on lipid composition: it was high with acidic phospholipids, intermediate with mixtures of acidic and neutral phospholipids, and low with neutral phospholipids. Electron microscopy of freeze-dried/metal-shadowed vinculin films, recovered from the phospholipid monolayer surface, revealed relatively tightly packed globular particles, 13 to 18 nm in diameter, on average significantly larger than the particles seen in glycerol-sprayed and rotary metal-shadowed preparations of soluble vinculin. The lipid monolayer penetration ability of vinculin appears to depend on its conformation. Acid treatment or low salt buffers induced reversible changes in vinculin conformation such that it abolished its lipid penetration potential. These conformational changes could be documented by both circular dichroism and fluorescence spectroscopy. These results indicate that in the focal contact area vinculin may act like a "glue" and link, in a reversible way, stress fibers of cultured cells via their anchor proteins to the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号