首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes. In addition to this structural function, PC is thought to play a major role in lipid turnover and signalling in eukaryotic systems. In prokaryotes, only some groups of bacteria, among them the members of the family Rhizobiaceae, contain PC. To understand the role of PC in bacteria, we have studied Rhizobium meliloti 1021, which is able to form nitrogen-fixing nodules on its legume host plants and therefore has a very complex phenotype. R. meliloti was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and potential mutants defective in phospholipid N-methyltransferase were screened by using a colony autoradiography procedure. Filters carrying lysed replicas of mutagenized colonies were incubated with S-adenosyl-L-[methyl-14C]methionine. Enzymatic transfer of methyl groups to phosphatidylethanolamine (PE) leads to the formation of PC and therefore to the incorporation of radiolabel into lipid material. Screening of 24,000 colonies for reduced incorporation of radiolabel into lipids led to the identification of seven mutants which have a much-reduced specific activity of phospholipid N-methyltransferase. In vivo labelling of mutant lipids with [14C]acetate showed that the methylated PC biosynthesis intermediates phosphatidylmonomethylethanolamine and phosphatidyldimethylethanolamine are no longer detectable. This loss is combined with a corresponding increase in the potential methyl acceptor PE. These results indicate that PC biosynthesis via the methylation pathway is indeed blocked in the mutants isolated. However, mass spectrometric analysis of the lipids shows that PC was still present when the mutants had been grown on complex medium and that it was present in the mutants in wild-type amounts. In vivo labelling with [methyl-14C]methionine shows that in phospholipid N-methyltransferase-deficient mutants, the choline moiety of PC is not formed by methylation. These findings suggest the existence of a second pathway for PC biosynthesis in Rhizobium.  相似文献   

3.
The Brucella cell envelope is characterized by the presence of phosphatidylcholine (PC), a common phospholipid in eukaryotes that is rare in prokaryotes. Studies on the composition of Brucella abortus 2308 phospholipids revealed that the synthesis of PC depends on the presence of choline in the culture medium, suggesting that the methylation biosynthetic pathway is not functional. Phospholipid composition of pmtA and pcs mutants indicated that in Brucella, PC synthesis occurs exclusively via the phosphatidylcholine synthase pathway. Transformation of Escherichia coli with an expression vector containing the B. abortus pcs homologue was sufficient for PC synthesis upon induction with IPTG (isopropyl-beta-d-thiogalactopyranoside), while no PC formation was detected when bacteria were transformed with a vector containing pmtA. These findings imply that Brucella depends on choline provided by the host cell to form PC. We could not detect any obvious associated phenotype in the PC-deficient strain under vegetative or intracellular growth conditions in macrophages. However, the pcs mutant strain displays a reproducible virulence defect in mice, which suggests that PC is necessary to sustain a chronic infection process.  相似文献   

4.
Membrane lipids in most bacteria generally consist of the glycerophospholipids phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine (PE). A subset of bacteria also possesses the methylated derivatives of PE, monomethylphosphatidylethanolamine, dimethylphosphatidylethanolamine, and phosphatidylcholine (PC). In Sinorhizobium meliloti, which can form a nitrogen-fixing root nodule symbiosis with Medicago spp., PC can be formed by two entirely different biosynthetic pathways, either the PE methylation pathway or the recently discovered PC synthase pathway. In the latter pathway, one of the building blocks for PC formation, choline, is obtained from the eukaryotic host. Under phosphorus-limiting conditions of growth, S. meliloti replaces its membrane phospholipids by membrane-forming lipids that do not contain phosphorus; namely, the sulfolipid sulfoquinovosyl diacylglycerol, ornithine-derived lipids, and diacylglyceryl-N,N,N-trimethylhomoserine. Although none of these phosphorus-free lipids is essential for growth in culture media rich in phosphorus or for the symbiotic interaction with the legume host, they are expected to have major roles under free-living conditions in environments poor in accessible phosphorus. In contrast, sinorhizobial mutants deficient in PC show severe growth defects and are completely unable to form nodules on their host plants. Even bradyrhizobial mutants with reduced PC biosynthesis can form only root nodules displaying reduced rates of nitrogen fixation. Therefore, in the cases of these microsymbionts, the ability to form sufficient bacterial PC is crucial for a successful interplay with their host plants.  相似文献   

5.
Green LS  Emerich DW 《Plant physiology》1997,114(4):1359-1368
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean.  相似文献   

6.
Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME.  相似文献   

7.
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (10(5) cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 10(9) cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 10(5) cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.  相似文献   

8.
Phospholipid uptake by Plasmodium knowlesi infected erythrocytes   总被引:2,自引:0,他引:2  
The uptake of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in Plasmodium knowlesi infected erythrocytes has been studied. Whereas uptake of phospholipids, in the absence of phospholipid transfer proteins, is negligible in control cells, the infected cells can incorporate considerable amounts of added phospholipids. The uptake is enhanced by the presence of lipid transfer proteins. Doubly labeled [3H]oleate, [14C]choline) PC does not undergo any appreciable remodelling following uptake, which strongly suggests that plasma PC is used as such for the biogenesis of the parasite membranes. Transport of extracellularly offered PS and PE towards the intraerythrocytic parasite and utilization of these lipids by the parasite are confirmed by the observation that these lipids are converted into respectively PE and PC. The extent and rate of these conversions depend on the way the phospholipids are introduced into the infected cells.  相似文献   

9.
Eight symbiotic mutants defective in lipopolysaccharide (LPS) synthesis were isolated from Rhizobium leguminosarum biovar phaseoli CFN42. These eight strains elicited small white nodules lacking infected cells when inoculated onto bean plants. The mutants had undetectable or greatly diminished amounts of the complete LPS (LPS I), whereas amounts of an LPS lacking the O antigen (LPS II) greatly increased. Apparent LPS bands that migrated between LPS I and LPS II on sodium dodecyl sulfate-polyacrylamide gels were detected in extracts of some of the mutants. The mutant strains were complemented to wild-type LPS I content and antigenicity by DNA from a cosmid library of the wild-type genome. Most of the mutations were clustered in two genetic regions; one mutation was located in a third region. Strains complemented by DNA from two of these regions produced healthy nitrogen-fixing nodules. Strains complemented to wild-type LPS content by the other genetic region induced nodules that exhibited little or no nitrogenase activity, although nodule development was obviously enhanced by the presence of this DNA. The results support the idea that complete LPS structures, in normal amounts, are necessary for infection thread development in bean plants.  相似文献   

10.
Susceptibility of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum to inducible plant defense metabolites such as phytoalexin and H2O2, was investigated. On the wild-type strain USDA 110 the soybean phytoalexin, glyceollin, showed bacteriostatic activity. Viable bacteria isolated from intact nodules were adapted to glyceollin. H2O2 in physiological concentrations did not affect wild-type bacteria. B. japonicum mutants defective in the biosynthesis of cyclic beta-(1-->3)-(1-->6)-glucans showed higher susceptibility to both phytoalexin and H2O2.  相似文献   

11.
Phosphatidylcholine (PC) is a typical eukaryotic phospholipid absent from most prokaryotes. Thus, its presence in some intracellular bacteria is intriguing as it may constitute host mimicry. The role of PC in Brucella abortus was examined by generating mutants in pcs (BApcs) and pmtA (BApmtA), which encode key enzymes of the two bacterial PC biosynthetic routes, the choline and methyl-transferase pathways. In rich medium, BApcs and the double mutant BApcspmtA but not BApmtA displayed reduced growth, increased phosphatidylethanolamine and no PC, showing that Pcs is essential for PC synthesis under these conditions. In minimal medium, the parental strain, BApcs and BApmtA showed reduced but significant amounts of PC suggesting that PmtA may also be functional. Probing with phage Tb, antibiotics, polycations and serum demonstrated that all mutants had altered envelopes. In macrophages, BApcs and BApcspmtA showed reduced ability to evade fusion with lysosomes and establish a replication niche. In mice, BApcs showed attenuation only at early times after infection, BApmtA at later stages and BApcspmtA throughout. The results suggest that Pcs and PmtA have complementary roles in vivo related to nutrient availability and that PC and the membrane properties that depend on this typical eukaryotic phospholipid are essential for Brucella virulence.  相似文献   

12.
Most rhizobial hemA mutants induce root nodules on their respective legume hosts that lack nitrogen fixation activity and leghemoglobin expression. However, a Bradyrhizobium japonicum hemA mutant elicits effective nodules on soybean, and we proposed previously that synthesis and uptake of the heme precursor [delta]-aminolevulinic acid (ALA) by the plant and bacterial symbiont, respectively, allow mutant rescue (I. Sangwan, M.R. O'Brian [1991] Science 251: 1220-1222). In the present work, the B. japonicum hemA mutant MLG1 elicited normal nodules on three hosts, including cowpea, a plant that is not effectively nodulated by a hemA mutant of Rhizobium sp. These data indicate that B. japonicum rather than soybean possesses the unique trait that allows normal nodule development by a hemA mutant. Cowpea expressed glutamate-dependent ALA formation activity in nodules induced by B. japonicum strains I110 or MLG1 and by Rhizobium sp. ANU240. Exogenous ALA was taken up by B. japonicum bacteroids isolated from soybean or cowpea nodules, and the kinetics of uptake were biphasic. By comparison, Rhizobium sp. ANU240 had very low ALA uptake activity. In addition, ALA uptake was observed in cultured cells of B. japonicum but not in cultured cells of three other rhizobial species tested. We suggest that the differential success of legume-rhizobial hemA symbioses is due to an ALA uptake activity in B. japonicum that is deficient in other rhizobia, thereby further validating the ALA rescue hypothesis.  相似文献   

13.
14.
A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.  相似文献   

15.
No phosphatidylcholine (PC) was detected in the membrane of Rhodobacter sphaeroides pmtA mutant (PmtA1) lacking phosphatidylethanolamine (PE) N-methyltransferase, whereas PE in the mutant was increased up to the mole % comparable to the combined level of PE and PC of wild type. Neither the fatty acid composition nor the fluidity of membrane was altered by pmtA mutation. Consistently, aerobic and photoheterotrophic growth of PmtA1 were not different from wild type. However, PmtA1 showed an extended lag phase (15 h) after the growth transition from aerobic to photoheterotrophic conditions, indicating the PC requirement for the efficient formation of intracytoplasmic membrane (ICM). Interestingly, the B800-850 complex of PmtA1 was decreased more than twofold in comparison with wild type, whereas the level of the B875 complex comprising the fixed photosynthetic unit was not changed. Since puc expression is not affected by pmtA mutation, PC appears to be required for the proper formation of the B800-850 complex in the ICM of R. sphaeroides.  相似文献   

16.
The Brucella cell envelope contains the zwitterionic phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Synthesis of PC occurs exclusively via the PC synthase pathway, implying that the pathogen depends on the choline synthesized by the host cell to form PC. Notably, PC is necessary to sustain a chronic infection process, which suggests that the membrane lipid content is relevant for Brucella virulence. In this study we investigated the first step of PE biosynthesis in B. abortus, which is catalyzed by phosphatidylserine synthase (PssA). Disruption of pssA abrogated the synthesis of PE without affecting the growth in rich complex medium. In minimal medium, however, the mutant required choline supplementation for growth, suggesting that at least PE or PC is necessary for Brucella viability. The absence of PE altered cell surface properties, but most importantly, it impaired several virulence traits of B. abortus, such as intracellular survival in both macrophages and HeLa cells, the maturation of the replicative Brucella-containing vacuole, and mouse colonization. These results suggest that membrane phospholipid composition is critical for the interaction of B. abortus with the host cell.  相似文献   

17.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

18.
Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)‐choline to diacylglycerol. Phosphocholine, the direct precursor to CDP‐choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [32P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [32P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.  相似文献   

19.
In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号