首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunflower (Helianthus annuusL.) and oilseed rape (Brassica napusL.) were grown at constant temperatures of 30 ?C (warm) and13 ?C (cold). Maximal rates of photosynthesis between 5 ?C and35 ?C were at higher temperatures in sunflower than rape. Photosyntheticrate over 4 h at the growth temperature declined in warm-andcold-grown rape and cold-grown sunflower, but remained constantin warm-grown sunflower. The stimulation of photosynthesis by2.0 kPa O2 compared to 21 kPa O2 declined with decreasing temperature.At 10 ?C in warm-grown rape photosynthesis was insensitive to2.0 kPa O2. However, sensitivity to low O2 continued at 10 ?Cin warm-grown sunflower. Carbohydrates accumulated in the cold,particularly fructose, glucose and sucrose in warm-grown sunflowertransferred to 13 ?C. By monitoring changes of 14C in leaves after the assimilationof 14CO2, the rates of carbon export from leaves, pool sizesand carbon fluxes between them were estimated. The transferof warm- and cold-grown rape to 13 ?C and 30 ?C, respectively,had little effect on these parameters over 22 h. However, exportof carbon from sunflower leaves at 13 ?C was markedly less thanat 30 ?C, irrespective of the growth temperature, due to slowerexport from the transport pool. The rapid suppression of carbonexport at 13 ?C in warm-grown sunflower may be due to inhibitedtranslocation rather than reduced sink demand in the cold. It is concluded that assimilate utilisation is more depressedin the cold than is photosynthesis; this imposes a greater restrictionon biomass production in sunflower than in rape. Key words: Sunflower, rape, temperature, photosynthesis, carbon fluxes  相似文献   

2.
Analysis of products formed in Chlorella vulgaris 11 h cellsduring photosynthesis in air containing 3,000 ppm 14CO2 at varioustemperatures revealed that the level of 14C-starch was maximumaround 20–24?C and decreased with further rise in temperatureuntil 40?C, while 14C-sucrose greatly increased at temperaturesabove about 28?C. Elevating the temperature from 20 to 38?Cduring photosynthetic 14CO2 fixation resulted in a remarkabledecrease in 14C in starch and a concomitant increase in 14Cin sucrose. This conversion of starch to sucrose when shiftingthe temperature from 20 to 38?C proceeded even in the dark.Hydrolysis of sucrose by rß-fructosidase showed that,irrespective of the experimental conditions, the radioactivitiesin sucrose were equally distributed between glucose and fructose.The enhancement of starch degradation with temperature risewas more remarkable than that of the activity of ribulose bisphosphatecarboxylase from the same cells. When Chlorella cells whichhad been preloaded with 14C-starch after photosynthesis for30 min at 20?C were incubated in the dark for an additional30 min at 20?C, 14C-starch was degraded by only about 4%. However,the values after 30-min dark incubation at 28, 32, 36 and 40?Cwere increased by about 10, 19, 36 and 50%, respectively. Duringthe temperature-dependent conversion of starch to sucrose, nosignificant amount of radioactivity accumulated in free glucoseand maltose. (Received October 27, 1981; Accepted January 9, 1982)  相似文献   

3.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

4.
Growth and dark respiration were measured in dense, miniatureswards of kikuyu grass grown at constant temperatures of 15,20, 25 and 30 °C. Total respiration over the first 12 hof darkness was very high and CO2 efflux per unit surface areavaried from 2.4 to 3.9 g CO2 m–2 h–1 at 15 and 30°C respectively. Such rates were consistent with the correspondinglyhigh net growth rates of 24 and 63 g d. wt m–2 d–1and the heavy yields of herbage. When plants were kept in thedark, CO2 efflux subsequently declined rapidly to a lower, constantrate which was taken to be the maintenance respiration rate.The half-life of the declining phase of respiration averaged10.9 and 6.0 h at 15 and 30 °C respectively, and was curvilinearlyrelated to the specific maintenance respiration rate (m). Therapid decline in respiration was consistent with the low concentrationsof total soluble carbohydrate and starch in the herbage. Valuesof m for lamina and top growth increased with temperature witha Q10 of 2.6 and 1.42 respectively, but m of stems alone wasnot affected by temperature. Using results from this study forkikuyu and from McCree (1974) for sorghum and white clover,it was noted that all three species have similar m when grownat temperatures which are near their respective optimums forgrowth. Kikuyu, Pennisetum clandestinum, growth, respiration, temperature  相似文献   

5.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. in flowing solution culture. I. Growth.—J.exp. Bot. 38: 42–52 Oilseed rape (Brassica napus L. cv. Bien venu) was grown for49 d in flowing nutrient solution at pH 6?0 with root temperaturedecrementally reduced from 20?C to 5?C; and then exposed todifferent root temperatures (3, 5, 7, 9, 11, 13,17 or 25?C)held constant for 14 d. The air temperature was 20/15?C day/nightand nitrogen was supplied automatically to maintain 10 mmolm–3 NH4NO3 in solution. Total dry matter production wasexponential with time and similar at all root temperatures givinga specific growth rate of 0?0784 g g–1 d–1. Partitioningof dry matter was influenced by root temperature; shoot: rootratios increased during treatment at 17?C and 25?C but decreasedafter 5 d at 3?C and 5?C. The ratio of shoot specific growthrate: root specific growth rate increased with the ratio ofwater soluble carbohydrates (shoot: root). Concentrations ofwater soluble carbohydrates in shoot and root were inverselyrelated to root temperature; at 3, 5 and 7?C they increasedin stem + petioles throughout treatment, coinciding with a decreasein the weight of tissue water per unit dry matter. These resultssuggest that the accumulation of soluble carbohydrates at lowtemperature is the result of metabolic imbalance and of osmoticadjustment to water stress. Key words: Brassica napus, oilseed rape, root temperature, specific growth rate  相似文献   

6.
A cytokinin-nonrequiring strain (T22) was isolated from a cytokinin-requiringcallus strain T2 of tobacco (Nicotiana tabacum var. Bright Yellow). Strain T22 grew rapidly on the medium without added kinetinat 26?C. But its growth was completely suppressed at 16?C. Thisgrowth suppression at 16?C was partially recoverable by supplyingkinetin. Benzyladenine, geranylaminopurine and 2-methyl-8-benzylamino-s-triazolo[l,5-a]pyrazinewere also effective in removing growth suppression at 16?C.Adenine, which was unable to remove growth suppression of T22at 16?C, promoted the growth of T2 at 26?C, but not at 16?C.Physiological differences between cytokinin-requiring and -nonrequiringcalluses are discussed. 1Part II in the series "Studies, on Plant Tissue Cultures";for Part I, See Plant & Cell Physiol. 9: 103–114 (1968). (Received May 29, 1970; )  相似文献   

7.
The influence of temperature on photosynthesis and transpirationwas studied in ten varieties of Lolium perenne, L. multiflorum,Dactylis glomerata, and Festuca arundinacea from three climaticorigins grown in three different controlled environments (15?C, 72 W m-2 visible irradiation, 16-h photoperiod; 25 ?C, 72W m-2 visible irradiation, 16-h photoperiod; and 25 ?C, 180W m-2 visible irradiation, 16-h photoperiod) and in the glasshousein July/August. The optimum temperature for photosynthesis was influenced primarilyby growth environment; growth at low temperature (15 ?C) resultedin a low optimum temperature, which differed little from varietyto variety. The maximum CO2-exchange rate was influenced bygrowth environment and by variety. Within a variety, plantsgrown at higher light intensity or lower temperature had a greaterCO2-exchange rate. Seven varieties showed a negative correlationbetween the optimum leaf temperature and the maximum CO2-exchangerate. Activation energies for photosynthesis were influencedby growth environment only. There were marked varietal differences in the values of leafresistances (ra + rt) obtained from transpiration data at theoptimum leaf temperature for CO2 exchange. In Lolium, and Dactylisthe Mediterranean varieties had higher leaf resistances thanthe Northern varieties with the maritime varieties intermediate.In general the Dactylis varieties had higher resistances thanthe corresponding Lolium and Festuca varieties. Only at highgrowth temperatures was (ra+rl) insensitive to temperature;otherwise an activation energy of about 10 kcal/mole was observed.A negative correlation was found between mean varietal diffusionresistances (ra+rl), and corresponding maximum CO2-exchangerates.  相似文献   

8.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

9.
Potato plants (Solanum tuberosum L.) were grown in water culturein a controlled environment. Cooling (+8°C) of individualtubers decreased their growth rates and increased the growthrates of non-cooled tubers of the same plant. The carbohydrateconcentration in non-cooled and cooled tubers did not differsignificantly, but 14C-import from labelled photosynthate waslower in cooled than in non-cooled tubers. The markedly lowerconversion rate of ethanol-soluble 14C to starch in cooled,in comparison to non-cooled tubers, was not associated withsignificant differences in the in vitro activities of starchsynthase, ADPG-pyrophosphorylase and starch phosphorylase understandard assay conditions (+30°C). However, the Q10-valuesof the enzymes differed in vitro in the temperature range between30°C and 8°C, leading to a marked decrease in the activityratio of ADPG-pyrophosphorylase/starch phosphorylase in cooledtubers. In tubers differing in growth rates without manipulation, 14d after tuber initiation significant positive correlations werefound between 14C-concentration of tuber tissue and the in vitroactivities of starch synthase and ADPG-pyrophosphorylase anda significant negative correlation between 14C-concentrationand starch phosphorylase. In contrast, in tubers which wereanalysed 5 d after initiation, there were only small differencesbetween tubers in growth rate, 14C import and the activity ratioADPG-pyrophosphorylase/starch phosphorylase. From various directand indirect evidence it is concluded that the growth rate ofindividual tubers, and thus the sink strength, is at least inpart controlled by the activity of starch synthesizing enzymes. Key words: Potato tuber, cooling, starch synthesizing enzymes  相似文献   

10.
11.
Lehnherr, B. M?chler, F. and N?sberger, J. 1985. Effect of CO2concentration during growth on a CO2 concentrating mechanismin white clover as predicted from differential 14CO2/12CO2 uptake.-J. exp. Bot. 36: 1835-1841. White clover was grown at 20 and100 Pa p(CO2). The CO2 response of net photosynthesis and differentialuptake of 14CO2 and 12CO2 by leaves were measured at varioustemperatures and at various O2 and CO2 partial pressures andcompared with predictions from ribulose bisphosphate carboxylase/oxygenasekinetics. Discrepancies between the observed gas exchange characteristicsfor the leaves and those predicted from the enzyme kineticswere interpreted as being due to a CO2 concentrating mechanism.Plants grown at 20 Pa p(CO2) showed a higher affinity for CO2than plants grown at 100 Pa p(CO2) when measured at 10 ?C. Nodifference in affinity was found at 30 ?C. The postulated CO2concentrating effect was greater in plants grown at low CO2than in plants grown at high CO2 concentration and occurredonly at low temperature and low CO2 partial pressure. It issuggested that plants grown at the lower CO2 partial pressurehave a higher affinity for CO2 due to a more efficient CO2 concentratingsystem than plants grown at the higher CO2 partial pressure. Key words: Photosynthesis, CO2, concentration, RuBP carboxylase/oxygenase  相似文献   

12.
Potassium uptake rhythm in the long-day duckweed Lemna gibbaG3 grown at 26?C disappeared at temperatures below 12?C. However,when the plants were returned to 26?C, the rhythm immediatelyrestarted from circadian time 12 with its normal wave form.Temperature steps from 20 to 30?C or from 30 to 20?C did notmodify the phase of the rhythm, although a step from 15 to 30?Cor from 30 to 15?C evoked a distortion in the wave form withoutintroducing any reproducible phase shift. Various periods of 9 or 4?C given during the subjective dayphase reduced the pace of rhythm progress by 40 or 60%, whilethose given during the subjective night phase did not. Theseresults suggest that the subjective day and night phases arethe energy charge and discharge phases for the underlying oscillator,respectively. Energy fluxes for the oscillators are brieflydiscussed. 1Present address: National Institute for Basic Biology, Okazaki444, Japan. 2Present address: Aichi Gakuin University, Chikusa, Nagoya 464,Japan. (Received August 25, 1979; )  相似文献   

13.
Growth parameters of the diatom Astenonella formosa Hass, andits fungal parasite Rhizophydium planktoniacum Canter emend,were measured at five temperatures and six light intensitieswith a 15?9 h light:dark cycle, using laboratory cultures ofboth organisms. With the parameter values obtained, thresholdhost densities were calculated in order to estimate the effectsof light and temperature on survival and epidemic developmentof the parasite The uninfected host reached light-saturatedgrowth rates between 0.917 day1 at 21?C and 0 285 day1at 2?C. Under light limitation the optimum growth temperaturefor Asterionella decreased because of a reduced growth efficiencyGrowth inhibition at high irradiances was only observed at 2?CThe parasite reached the highest zoospore production at 2?Cand saturating irradiances: 30 2 zoospores per sporangium. Thisvalue was consistently reduced by lower irradiances and highertemperatures to only 2.2 zoospores at the opposite light andtemperature extremes Low light conditions depressed also theinfectivity of the zoospores At very low irradiances, they becamecompletely uninfective The light dependence of zoospore productionand infectivity was restricted to light intensities that limitedthe growth rate of the host. The development time of the sporangiaand the mfecti ve lifetime of the zoospores were not affectedby light but only by temperature, and ranged from 19.0 and 121 days respectively at 2?C to 1.9 and 2 1 days at 21?C- Theseeffects result in optimal conditions for the development ofa Rhizophydium epidemic at 11?C and a moderate light limitationof Astenonella At temperature above 7?C, the possibilities forepidemic development are only slightly affected by light andtemperature, except for very low irradiance levels, when thezoospores of the parasite become uninfective. However, below5?C the development of an epidemic is only possible at limitinglight levels. Conditions for survival of the parasite at lowhost densities are optimal at low temperatures and high irradiancelevels  相似文献   

14.
Potato production in the tropical lowlands during the rainyseason is constrained by high temperature and low irradiance.This study examined the effect of these two variables on drymatter production and allocation, using plant growth, leaf anatomy,gas exchange and chlorophyll fluorescence measurements. Plantsof two clones, Solanum goniocalyx cv. Garhuash Huayro (GH) andDTO-33, a heat tolerant clone of S. tuberosum x S. phureja,were grown in growth chambers at 33/25 °C or 20/10 °Cday/night temperature. At each temperature, plants were grownin either 12 h high irradiance (430–450 µmol m–2s–1 PAR) or 12 h low irradiance (250–280 µmolm–2 s–1) both with a 6–h photoperiod extensionof 6 µmol m–2 s–1. Plants were harvested after10 d (initial harvest) and after 20 d (final harvest). By theend of the study DTO-33 had produced more dry matter and hadtuberized, whereas GH had a greater leaf area ratio (LAR) andspecific leaf area (SLA). The highest relative growth rate (RGR)was at low temperature and low irradiance, possibly due to acombination of thin leaves with a large surface area. At thehigh temperature, low irradiance had the opposite effect, producingthe lowest net assimilation rate (NAR) and lowest RGR. Bothtuber number and weight were markedly reduced by high temperature.Low irradiance, in combination with high temperature, producedvirtually no tubers. Stomatal density, which was greater onGH than in DTO-33, was increased at high temperature. When measuredat 30 °C both clones, especially DTO-33, showed heat-adaptationin terms of ability to maintain a high rate of net photosynthesisat 30 °C. Plants grown at high irr-adiance and low temperaturehad the lowest net photosynthetic rate at 30 °C. Concurrentmeasurements of chlorophyll fluorescence indicated that onlythe initial (O) fluorescence parameter was affected. The dataconfirm the field observation that reduction in potato growthat high temperature can be aggravated by lower irradiance. Thisreduction is associated with a reduced leaf area and NAR. Growth analysis, heat adaptation, light  相似文献   

15.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

16.
Mycclia of Neurospora crassa wild type (FE SC no. 853), harvestedduring the exponential phase of growth on defined minimal mediaincorporated glycine-2-14C, serine-3-14C and formate-14C intoproteins, DNA and RNA. Supplementing the growth medium with1 mM glycine increased the flow of glycine and formate carboninto these products. In contrast, this supplement decreasedthe incorporation of serine-14C. When such cultures were preincubatedfor 30 min with adenine, formaldehyde, formate or L-methionine,labelling of the nucleic acids and protein fractions by glycine-2-14Cwas altered. It is concluded that glycine increases the turnoverof C1 units in Neurospora, resulting in greater contributionsof the C-2 in nucleic acid and protein synthesis. (Received May 14, 1977; )  相似文献   

17.
The rates of photosynthetic 14CO2 fixation by Chlorella vulgarisllh, grown under high CO2, were determined between 4 to 37°Cwith air containing from 300 to 13,000 ppm 14CO2. When the CO2level was increased, both the rate of photosynthesis and theoptimum temperature for maximum photosynthesis increased. Themaximum photosynthetic rate was reached at 12°C with 300ppm l4CO2. Among the photosynthetic products fromed at 300 ppm 14CO2, glycolatedecreased greatly when the temperature was raised from 20 to30°C. At 3,000 ppm 14CO2 an insignificant amount of glycolatewas formed at all temperatures, whereas 14C-incorporation intothe insoluble fraction, sucrose, and the lipid fraction wassignificantly higher than at 300 ppm 14CO2. The 14C in sucrosewas greatly increased and the radioactivity in the insolublefraction decreased when the temperature was raised from 28 to36°C. (Received April 8, 1980; )  相似文献   

18.
Stands of pearl millet were grown in glasshouses in which meanair temperature was controlled to 19, 22, 25, 28 and 31 ?C withan amplitude of ?5 ?C. During the main growth period, leaf areaindex increased at a constant rate which was proportional tomean temperature above a base of 10 ?C. The warmest stand, therefore,intercepted more radiation before anthesis but the transmissioncoefficient was independent of temperature (K 0.3). Based ondry weight at final harvest, the efficiency of conversion forintercepted radiation ranged from about 2.1–2.4 g MJ–1consistent with field experience. Combining this informationwith figures for the duration of growth in relation to temperaturesuggests that growth rate should be maximal at 25–27 ?Cand total dry weight at 20–22 ?C. Key words: Temperature, Pearl millet, Growth rate, Light  相似文献   

19.
Allen, S., Thomas, G. E. and Raven, J. A. 1986. Relative uptakerates of inorganic nutrients by and grown Ricinus communis and by two Plantago species.—J. exp. Bot. 37: 419–428. The relative rates of uptake and assimilation of C, N, P, S,Cl, K+ , Na+ Ca2+ and Mg2+ by and grown Ricinus conimunisand by NH4NO3- grown Plantago lanceolata and P. major were calculatedfrom data presented elsewhere. Results showed that for grown Ricinus the short term relativeuptake rates, for each nutrient X did not change significantly over the steady-state periodof exponential growth. The average gave , the mean relative uptake rate during exponential growth, for each nutrient. The amountof each nutrient taken up from a nutrient solution over a periodof time could, therefore, be calculated. For and -grown R. communis,the relative uptake rate of each nutrient was a constant fractionof the relative rate of carbon assimilation. It is suggestedthat this is typical of plants of cauline habit. For both Plantago spp., the relative rates of nitrogen uptakeand assimilation fell significantly during the exponential growthphase It is suggested that this could be a characteristic ofthe growth habit of the rosette plant. Key words: Relative uptake rates, Ricinus, Plantago, ammonium, nitrate, cauline, rosette  相似文献   

20.
The effect of low temperatures on the fatty acid compositionof phosphatidylglycerol (PG) in thylakoid membranes, in particularon the ratios of nmol% 16:1(3t) (mg fresh weight)–1 ofcotyledons and nmol 16:1(3t) (mg chlo rophyll)–1 weremeasured during squash seedling growth. Plants were germinatedand grown for one day at 30°C then were either kept at 30°C(control plants) or trans ferred to low temperatures (18, 14or 10°C). When plant were transferred from 30°C to lowtemperatures, the increase in fresh weight was gradually limited.The lowe the temperature, the smaller was the fresh weight.In contrast, the relative content of 16:1(3t) and 18:3, as wella the ratios of nmol 16:1(3t) (mg chlorophyll)–1 and mol%16:1(3t) (mg cotyledon fresh weight)–1 increased indicatingthat the increase of fresh weight and chlorophyll was mor sensitiveto low temperature than PG desaturation in thyla-koid membranes.Furthermore, low temperatures inducei an increase in 16:1(3t)and 18:3 (the final products of PC synthesis) at the expenseof 16:0 and 18:1 (the initial products of PG synthesis). However,within a range of temperature from 10 to 18°C, the extentof these changes (nmol% of 18:3 or 16:1(3t) per day) was graduallylimited by lower temperatures. We therefore propose that lowtemperature inhibit both fatty acid synthesis and desaturationactivities. However, at low temperatures the fatty acid synthesisis likely to be more strongly inhibited than the desaturationactivities, thus explaining the observed increase in the relativecontent of PG-18:3 and PG-16:l(3t). Results an discussed interms of the mechanism which could be in volved in the metabolismof PG in squash cotyledons. (Received July 5, 1996; Accepted March 10, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号