首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multipotential retinal precursors give rise to all cell types seen in multilayered retina. The generation of differentiation and diversity of neuronal cell types is determined by both extrinsic regulatory signals and endogenous genetic programs. We have previously reported that cell commitment in human retinal precursor cells (SV-40T) can be modified in response to exogenous growth factors, basic fibroblast growth factor, and transforming growth factor alpha (bFGF and TGFalpha). We report in this study that nontransformed human retinal precursors differentiate into photoreceptors by a cell density-dependent mechanism, and the effects were potentiated by bFGF and TGFalpha alone or in combination. A larger proportion of multipotential precursors plated at a density of 1 x 10(4) cells/cm(2) differentiated into neurons (photoreceptors) compared to cells plated at 3-5 x 10(4)/cm(2) and 1 x 10(5) cells/cm(2) under serum-free conditions and the effects were amplified seven- to eightfold in response to growth factors. Basic fibroblast growth factor (bFGF) and TGFalpha can induce 90% of the cells to assume a photoreceptor phenotype at a lower cell density, compared to only 30 and 25% of the cells acquiring a photoreceptor phenotype at intermediate and higher cell densities. Furthermore, at a lower cell density, 60-70% of the cells incorporate Bromodeoxyuridine (Brdu), suggesting that cells in a cell cycle may make a commitment to a specific fate in response to neurotrophins. Neurons with a photoreceptor phenotype were positive for three different sets of antibodies for rods/cones. Cells also exhibited upregulation of other proteins such as a D4 receptor protein expressed in photoreceptors, protein kinase Calpha (PKCalpha) expressed in rod bipolars and blue cones, and some other neuronal cell types. This was also confirmed by Western blot analysis. Newly derived photoreceptors survive for a few days before significant cell death ensues under serum-free conditions. To summarize, differentiation in precursors is density dependent, and growth factors amplify the effects.  相似文献   

2.
3.
The cytoplasmic domain of the transforming growth factor-alpha precursor (proTGFalpha) contains a C-terminal PSD-95/SAP90, Discs Large, and Zona Occludens-1 (PDZ) recognition motif (TVV). By yeast two-hybrid screening of a mouse embryo library, we have found that a third member of a family of PDZ-containing proteins, membrane associated guanylate kinase inverted-3 (MAGI-3), binds to TGFalpha's TVV. MAGI-3 is widely expressed in multiple mouse tissues, including brain. Immunolocalization showed that MAGI-3 and TGFalpha were colocalized in neurons in the cortex and dentate gyrus, as well as in ependymal cells and some astrocytes. In vitro, proTGFalpha bound the PDZ-1 domain of MAGI-3 and MAGI-2, but not MAGI-1. MAGI-3 and the 17-kDa cell surface form of proTGFalpha interact transiently in MDCK cells stably transfected with both MAGI-3 and human proTGFalpha cDNAs. MAGI-3 and wild-type proTGFalpha colocalize at the cell surface. In contrast, MAGI-3 forms a stable complex with membrane-fixed TGFalpha early in the secretory pathway and interacts with immature and cell surface forms of membrane-fixed TGFalpha. Overexpression of MAGI-3 resulted in increased levels of TGFalpha in the basolateral medium of polarized MDCK cells, suggesting that MAGI-3 has a role in efficient trafficking of TGFalpha to the cell surface in polarized epithelial cells.  相似文献   

4.
Growth factors may play an important role in regulating the growth of the proximal tubule epithelium. To determine which growth factors could be involved, we have investigated the mitogenicity of various purified factors in rat kidney proximal tubule epithelial (RPTE) cells cultured in defined medium. Fibroblast growth factors, aFGF (acidic FGF) and bFGF (basic FGF), stimulate DNA synthesis in a dose-dependent manner, with ED50 values of 4.5 and 3.2 ng/ml, respectively; their effects are not additive. With cholera toxin in the medium, both aFGF and bFGF can replace insulin or epidermal growth factor (EGF) to attain the maximum level of cell growth, but they cannot replace cholera toxin. Cholera toxin specifically potentiates the effects of FGFs on DNA synthesis. At high cell density, both insulin and insulin-like growth factor 1 (IGF-1) induce DNA synthesis more effectively than EGF, FGFs and cholera toxin. The high concentration (0.2-1.0 microgram/ml) of insulin required for cell growth can be replaced by a low concentration of IGF-1 (10-20 ng/ml), indicating that insulin probably acts through a low affinity interaction with the IGF-1 receptor. Transforming growth factor-beta 1 (TGF-beta 1) inhibits DNA synthesis induced by individual factors and combinations of factors in a concentration-dependent manner. Northern blot analysis shows that mRNA for TGF-beta 1, IGF-1, and aFGF, but not bFGF are present in rat kidney. Western blot analysis and bioassay data confirmed that the majority of FGF-like protein in rat kidney is aFGF. The data suggest that in addition to EGF, IGFs, and TGF-beta, FGFs may also be important kidney-derived regulators of proximal tubule epithelial cell growth in vivo and in vitro.  相似文献   

5.
It is not known whether the differentiated fate of retinal precursor cells is determined before, during, or after terminal mitosis. Previous studies from this laboratory led to the hypothesis that retinal precursor cells remain plastic after final mitosis and will follow a photoreceptor "default pathway" unless induced to develop as neurons by intraretinal factors. This hypothesis predicts that isolated precursors undergoing terminal mitosis and differentiation in cell culture, in the absence of the retinal microenvironment, should become photoreceptors, regardless of embryonic age. To test this prediction precursor cells were dissociated from 5- to 8-day chick embryo retinas and grown as single cells in vitro. Bromodeoxyuridine (BRDU)- and [3H]thymidine-labeling techniques, coupled with serial photography of precursor development in culture, showed that at all donor ages some of the isolated cells divided one or more times and became postmitotic in vitro. Analysis of cell phenotype by phase-contrast microscopy, sequential photography, autoradiography, and immunocytochemistry showed that the majority of precursors from all donor ages differentiated as photoreceptors. These observations support a prediction derived from the "photoreceptor default" hypothesis.  相似文献   

6.
Anchorage-independent growth of normal rat kidney (NRK) fibroblast in soft agar depends on both transforming growth factor beta (TGF beta) and epidermal growth factor (EGF). To examine whether c-fos protein is involved in phenotypic transformation of NRK cells, we have transfected and isolated several NRK cell lines that carry the human c-fos gene fused to the metallothionein IIA promoter. A transfectant, Nf-1, had constitutive levels of the human c-fos expression. Anchorage-independent growth of Nf-1 was already stimulated by EGF alone, and the colony sizes of Nf-1 were comparable to those of the parental NRK in the presence of both EGF and TGF beta. Anchorage-independent growth of NRK could be observed in the presence of TGF beta or retinoic acid or platelet derived growth factor (PDGF) and EGF. No growth of NRK in soft agar appeared when basic fibroblast growth factor (bFGF) and EGF were present. By contrast, anchorage-independent growth of Nf-1 was surprisingly enhanced by EGF and TGF beta or retinoic acid or PDGF or bFGF. Expression of the human c-fos gene may compensate the signal to phenotypic transformation induced by TGF beta as well as retinoic acid or PDGF or bFGF.  相似文献   

7.
The retinal pigmented epithelium (RPE) is known to be site of the primary lesion in inherited retinal dystrophy in the Royal College of Surgeons (RCS) rat, a model for retinitis pigmentosa. Although the only functional defect so far detected in these cells is their failure to efficiently phagocytose shed photoreceptor outer segment debris, the actual cause of photoreceptor cell death is still unknown. Recently the possibility of “trophic factors” important in photoreceptor survival produced by normal RPE but not by dystrophic RPE has been suggested. Hence we decided to investigate the presence and abundance of two candidate diffusible factors, the acidic and basic fibroblast growth factors (aFGF and bFGF, respectively), as well as their high affinity cell surface receptors (FGF-R). mRNA was isolated from primary cultures of purified normal and dystrophic RPE and analyzed by PCR amplification using specific oligonucleotide primers for aFGF and bFGF: the size and abundance of amplified fragments was similar for both cell types. Also, aFGF protein, detected by immunocytochemistry using specific antisera, appeared to be present in approximately equal amounts and distributed in a similar pattern. However, scatchard analysis of radio-labelled bFGF binding to primary cultures of normal and dystrophic rat RPE revealed that dystrophic RPE possess only 29% the number of surface receptors compared to congenic normal cells. Furthermore, the level of expression of FGF-R2 mRNA, but not that of FGF-R1, was significantly different. Other parameters measured (receptor affinity, profile of ligand internalization and degradation, receptor molecular weight and mitogenic activity) did not show any significant differences between normal and dystrophic RPE. The precise role of FGF-R deficiency in the etiology of the disease hence remains to be determined, but it indicates the importance of trophic factors in the normal functioning of the retina. © 1993 Wiley-Liss, Inc.  相似文献   

8.
A cell line was generated from U7 cells (a subline of PC12 rat pheochromocytoma cells) that contains a stably integrated transforming mouse N-ras (Lys-61) gene under the control of the long terminal repeat from mouse mammary tumor virus. Such cells, designated UR61, undergo neuronal differentiation upon exposure to nanomolar concentrations of dexamethasone, as a consequence of expression of the activated N-ras gene (I. Guerrero, A. Pellicer, and D.E. Burstein, Biochem, Biophys. Res. Commun. 150:1185-1192, 1988). Exposure of UR61 cells to either nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) results in a marked induction of c-fos RNA, with kinetics paralleling those of NGF- or bFGF-induced expression of c-fos RNA in PC12 cells. Dexamethasone-induced expression of activated N-ras p21 results in blocking of c-fos RNA induction by NGF or bFGF in a time-dependent manner. Activated N-ras p21-mediated inhibition of c-fos RNA induction in UR61 cells is selective for NGF and bFGF and is not due to selective degradation of c-fos RNA. Normal and transforming N-ras can trans activate the chloramphenicol acetyltransferase gene linked to mouse c-fos regulatory sequences when transient expression assays are performed. Our observations suggest that N-ras p21 selectively interacts with pathways involved in induction of c-fos expression which initiate at the receptors for NGF and bFGF.  相似文献   

9.
Neurons synthesise and secrete many growth and survival factors but it is not usually clear whether they are released locally at the cell body or further afield from axons or axon terminals. Without this information, we cannot predict the site(s) of action or the biological functions of many neuron-derived factors. For example, can neuronal platelet-derived growth factor (PDGF) be secreted from axons and reach glial cells in nerve-fibre (white-matter) tracts? To address this question, we expressed PDGF-A in retinal ganglion neurons in transgenic mice and tested for release of PDGF from cell bodies in the retina and from axons in the optic nerve. In both the retina and optic nerve, there are glial cells that express PDGF receptor alpha (PDGFR alpha) [1] and divide in response to PDGF [2-5], so we could detect functional PDGF indirectly through the mitogenic response of glia at both locations. Expressing PDGF-A in neurons under the control of the neuron-specific enolase promoter (NSE-PDGF-A) resulted in a striking hyperplasia of retinal astrocytes, demonstrating that PDGF is secreted from the cell bodies of neurons in the retina [4]. In contrast, glial proliferation in the optic nerve was unaffected, indicating that PDGF is not released from axons. When PDGF was expressed directly in the optic nerve under the control of an astrocyte-specific promoter (GFAP-PDGF-A), oligodendrocyte progenitors hyperproliferated, resulting in a hypertrophic optic nerve. We conclude that PDGF is constitutively secreted from neuronal cell bodies in vivo, but not from axons in white-matter tracts.  相似文献   

10.
Platelet-derived growth factor AA (PDGF AA), in contrast to PDGF AB and BB, is a poor mitogen for smooth muscle cells (SMC). However, together with basic fibroblast growth factor (bFGF) it acts synergistically on DNA synthesis of these cells. Northern blot analysis revealed that bFGF selectively increases the PDGF-receptor alpha subtype (PDGF-R alpha) mRNA level without a significant effect on the PDGF-R beta mRNA level. The amount of PDGF-R alpha protein is also selectively increased after stimulating SMC with bFGF as shown by immunoprecipitation of lysates from SMC with anti-PDGF-R alpha antibodies. The number of binding sites for 125I-PDGF AA is more than doubled after bFGF-treatment, whereas the specific binding for PDGF AB and BB increased only by approximately 30 and 20%, respectively. The increase in the number of PDGF-R alpha renders the SMC responsive for PDGF AA as demonstrated by the induction of the proto-oncogene c-fos as well as by an increased cell proliferation. The enhanced PDGF binding after bFGF treatment may in fact explain the observed synergistic behavior. These data are discussed with regard to a possible role of growth factor-induced transmodulation of receptor expression during atherogenesis.  相似文献   

11.
Neuronal precursor cells present in dorsal root ganglia (DRG) during early development have been previously shown to differentiate in vitro to neurons, as characterized by morphology, cell surface antigens, and electrophysiological properties (H. Rohrer, S. Henke-Fahle, T. El-Sharkawy, H. D. Lux, and H. Thoenen, 1985, Embo J. 4, 1709-1714). In the present study the conditions necessary for the initial differentiation and long-term survival of these cells were established, and the neurotransmitter phenotype of the newly differentiated neurons was analyzed. Neuronal precursor cells isolated from chick DRG at Embryonic Day 6 (E6) were found to require the presence of a polyornithine substrate coated with either laminin or fibronectin for initial neurite production and long-term survival. Neurons were unable to develop on polyornithine alone or on polyornithine coated with BSA. The survival and neurite outgrowth from neuronal precursor cells was not affected by the presence of nerve growth factor (NGF) during the first 9 hr in culture. NGF also had no effect on the proportion of cells expressing the neuron-specific Q211 antigen. However, after this initial differentiation period the neurons did require the presence of a survival factor. The neurons could be maintained for at least 6 days in culture both in the presence of NGF and in the presence of brain-derived neurotrophic factor (BDNF). At saturating concentrations of both survival factors no additive effects could be observed, indicating a complete overlap of NGF- and BDNF-responsiveness. Although the same proportion of cells survived with either NGF or BDNF during the first 3 days in culture, survival decreased in the presence of BDNF but not in the presence of NGF during the following 3 days in culture. The loss of BDNF responsiveness in vitro was also observed in vivo. After 6 days in culture about 70% of the neurons expressed substance P immunoreactivity, and approximately the same proportion was positive for myelin-associated glycoprotein immunoreactivity. The neurons did not express properties of adrenergic neurons such as tyrosine hydroxylase immunoreactivity or norepinephrine uptake. These findings indicate that the neuronal precursor cells from E6 DRG acquire the same characteristics in vitro as in their normal in vivo environment.  相似文献   

12.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) feature prominently in retinal neovascular diseases. Although the role of VEGF in retinal angiogenesis is well established, the importance of bFGF in this process requires further clarification. This study was undertaken to investigate the responses of retinal capillary cells (endothelial cells and pericytes) to bFGF under hypoxic conditions, as well as the potentially synergistic effects of bFGF and VEGF on the proliferation and cord formation of retinal endothelial cells. Cell proliferation was determined by cell number and by 3H-thymidine incorporation. Cord formation was assessed in three-dimensional gels of collagen type I. VEGF and bFGF increased 3H-thymidine incorporation by both cell types, an effect that was more pronounced in a hypoxic environment. Moreover, the proliferation of pericytes was stimulated to a greater extent by bFGF relative to VEGF. Endothelial migration in collagen gels, however, was induced more effectively by VEGF than by bFGF. A synergistic effect of VEGF and bFGF on cell invasion was observed in the collagen gel assay. VEGF and bFGF each augment proliferation of these cells, especially under hypoxia. We thus propose that these two cytokines have a synergistic effect at several stages of angiogenesis in the retina.  相似文献   

13.
Basic fibroblast growth factor (bFGF) is a well-characterized peptide hormone that has mitogenic activity for various cell types and elicits a characteristic set of responses on the cell types investigated. In this report we confirmed that bFGF is a potent mitogen for rat brain-derived oligodendrocyte (OL) precursor cells as well as for differentiated OL in secondary culture. bFGF was shown to induce expression of the protooncogene c-fos in OL. The role of protein kinase C (PKC) in mediating bFGF-stimulated proliferation as well as c-fos expression in OL was investigated. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated c-fos expression but did not trigger cell proliferation. When PKC was down-regulated by pretreatment of OL with PMA for 20 h, the bFGF-mediated stimulations of OL proliferation and c-fos mRNA expression were still observed, whereas the induction of c-fos mRNA by PMA was totally inhibited. These data demonstrate that the bFGF mitogenic signaling pathway in OLs does not require PKC. On the other hand, bFGF was found to stimulate specifically the phosphorylation of a limited number of PKC substrates in oligodendroglial cells, including the MARCKS protein. The bFGF-dependent phosphorylation of MARCKS protein was totally inhibited when PKC was first down-regulated, indicating that the phosphorylation of this protein is PKC dependent. Tryptic digestion of the phosphorylated MARCKS protein revealed that bFGF stimulated specifically the phosphorylation of the MARCKS protein on a single phosphopeptide. We provide evidence that bFGF also stimulated fatty acylation of the MARCKS protein, which might explain the observed specific bFGF-dependent phosphorylation of this protein in OL. We propose that bFGF-dependent fatty acylation and phosphorylation of the MARCKS protein are not essential for the transduction of the bFGF mitogenic signal but are probably linked to differentiation processes elicited by bFGF on OL.  相似文献   

14.
Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induce proliferation of neural precursor cells from several central nervous system regions in vitro. We have previously described two neural precursor cell populations from 13.5 days postcoitium (dpc) mesencephalon, one forming colonies in response to EGF, present in the ventral mesencephalon, and other forming colonies in response to EGF + bFGF, mainly present in the dorsal mesencephalon. In the present work, we show that 13.5 dpc dorsal mesencephalic cells required bFGF only for 1 h to form colonies in response to EGF alone, indicating that these two growth factors act in sequence rather than simultaneously. Absence of bFGF at the beginning of the culture gave rise to very few colonies, even after the addition of EGF + bFGF, suggesting that cells responsive to bFGF were very labile in the primary culture condition. This result is in contrast with cells pretreated with bFGF, which could survive for up to 5 days in the absence of bFGF or EGF, and then were capable of efficiently forming colonies in response to EGF. Basic FGF was also able to support survival of EGF-responsive neural precursors from both ventral and dorsal mesencephalon. The population requiring bFGF to form colonies in response to EGF was identified at different developmental stages (11.5-15.5 dpc), with higher contribution to the total number of neural precursors cells detected (EGF-responsive plus bFGF-responsive) at early stages and in the dorsal region. We show that the differentiation effect of bFGF resulted in the appearance of the mRNA coding for the EGF receptor. Our data suggest that bFGF-responsive neural precursors are the source of EGF-responsive neural precursors.  相似文献   

15.
Transformation of normal rat kidney fibroblasts (NRK) by the simian sarcoma virus (SSV) occurs as a result of expression of p28v-sis, a homologue of platelet-derived growth factor-B chain. Chromatographic separation revealed that the bulk (85%) of the mitogenic activity in SSV-transformed NRK cells was not due to p28v-sis but rather two distinct endothelial cell growth factors that eluted off heparin-Sepharose between 1 and 2 M NaCl. Protein purification and Northern blot analysis revealed that one of these growth factors was the 18 kd form of bFGF, the expression of which was found to increase 15-fold with SSV-transformation of NRK cells. The pure 18 Kd bFGF had no effect on NRK cell growth but was a potent neurotrophic agent for fetal rat cortical neurones and a potent growth factor for fetal bovine heart endothelial cells, suggesting a paracrine but not autocrine role for this protein. The second endothelial cell growth factor activity in SSV-transformed NRK cells was due to an 18 Kd protein which could be distinguished immunologically, biochemically, and mitogenically from bFGF.  相似文献   

16.
Transplantation of stem cells using biodegradable and biocompatible nanofibrous scaffolds is a promising therapeutic approach for treating inherited retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. In this study, conjunctiva mesenchymal stem cells (CJMSCs) were seeded onto poly-l-lactic acid (PLLA) nanofibrous scaffolds and were induced to differentiate toward photoreceptor cell lineages. Furthermore, the effects of orientation of scaffold on photoreceptor differentiation were examined. Scanning electron microscopy (SEM) imaging, quantitative real time RT-PCR (qPCR) and immunocytochemistry were used to analyze differentiated cells and their expression of photoreceptor-specific genes. Our observations demonstrated the differentiation of CJMSCs to photoreceptor cells on nanofibrous scaffolds and suggested their potential application in retinal regeneration. SEM imaging showed that CJMSCs were spindle shaped and well oriented on the aligned nanofiber scaffolds. The expression of rod photoreceptor-specific genes was significantly higher in CJMSCs differentiated on randomly-oriented nanofibers compared to those on aligned nanofibers. According to our results we may conclude that the nanofibrous PLLA scaffold reported herein could be used as a potential cell carrier for retinal tissue engineering and a combination of electrospun nanofiber scaffolds and MSC-derived conjunctiva stromal cells may have potential application in retinal regenerative therapy.  相似文献   

17.
Summary In this study, we have documented by morphological analysis, immunocytochemistry, and electrophysiology, the development of a culture system that promotes the growth and long-term survival of dissociated adult rat spinal cord neurons. This system comprises a patternable, nonbiological, cell growth-promoting organosilane substrate coated on a glass surface and an empirically derived novel serum-free medium, supplemented with specific growth factors (acidic fibroblast growth factor, heparin sulfate, neurotrophin-3, brain-derived neurotrophic factor, glial-derived neurotrophic factor, cardiotrophin-1, and vitronectin). Neurons were characterized by immunoreactivity for neurofilament 150, neuron-specific enolase, Islet-1 antibodies, electrophysiology, and the cultures were maintained for 4–6 wk. This culture system could be a useful tool for the study of adult mammalian spinal neurons in a functional in vitro system.  相似文献   

18.
19.
The control of neuronal number is critical for coordinating innervation and target organ requirements. Although basic fibroblast growth factor (bFGF) is known to regulate neuron number in the developing embryonic cortex, its potential role during postnatal brain development remains undefined. To address this issue, the cerebellum, a site of postnatal neurogenesis, was used. Previously, we found that a single peripheral injection of bFGF in newborn rats elicited mitosis of neuronal precursors in the external germinal layer (EGL) 8 h after administration. We now define the sustained effects of bFGF treatment on postnatal granule cell production and cerebellar growth. Seventy-two h after a single injection of bFGF (20 ng/g) in newborn rats, the fraction of BrdU-labeled cells in the EGL increased by 46% without altering apoptotic cell number, consistent with enhanced precursor proliferation. Moreover, bFGF increased mitotically labeled cells by 100% and total cell density by 33% in the internal granular layer (IGL), the final destination of the EGL precursors. Because cerebellar volume also increased by 22%, bFGF-induced proliferation enhanced generation of total IGL neurons and increased cerebellar growth. These morphometric measures were corroborated independently by using DNA quantitation: cerebellar DNA content increased 16% after bFGF injection, consistent with increased neuron number. Furthermore, using DNA quantitation as an index, increased total cerebellar cell number elicited by bFGF injection persisted beyond the neurogenetic period, until P35. We conclude that a single postnatal injection of bFGF increases granule neuron number and enhances cerebellar growth following mitotic stimulation.  相似文献   

20.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号