首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active, nonanesthetized, tracheotomized rabbits were subjected to continuous positive airway pressure (CPAP) for 4 days to determine the effects of chronic mechanical strain on lung and airway function. Rabbits were maintained for 4 days at a CPAP of 6 cmH(2)O (high CPAP), at a CPAP of 0 cmH(2)O (low CPAP), or without tracheostomy (no CPAP). After treatment with CPAP, changes in respiratory resistance in response to increasing concentrations of inhaled ACh were measured during mechanical ventilation to evaluate respiratory system responsiveness in vivo. Intraparenchymal bronchial segments were isolated from the lungs of all animals to evaluate airway smooth muscle responsiveness and bronchial compliance in vitro. Rabbits maintained for 4 days at high CPAP demonstrated significantly lower responsiveness to ACh compared with rabbits that were maintained at low CPAP or with no CPAP. Airways isolated from the lungs of animals subjected to the chronic application of high CPAP were also less responsive to ACh in vitro than the airways isolated from animals subjected to low CPAP or no CPAP. The persistence of the decreased responsiveness in the excised airway tissues suggests that the decreased respiratory system responsiveness observed in vivo results primarily from direct effects on the airways. The results demonstrate that the application of prolonged mechanical strain in vivo can reduce airway reactivity.  相似文献   

2.
The mechanical stress imposed on the lungs during breathing is an important modulator of airway responsiveness in vivo. Our recent study demonstrated that continuous positive airway pressure applied to the lungs of nonanesthetized, tracheotomized rabbits for 4 days decreased lower respiratory system responsiveness to challenge with ACh (Xue Z, Zhang L, Ramchandani R, Liu Y, Antony VB, Gunst SJ, Tepper RS. J. Appl Physiol 99: 677-682, 2005). In addition, airway segments excised from the lungs of these animals and studied in vitro exhibited reduced contractility. However, the mechanism for this reduction in contractility was not determined. The stress-induced decrease in airway responsiveness could have resulted from alterations in the excitation-contraction coupling mechanisms of the smooth muscle cells, or it might reflect changes in the structure and/or composition of the airway wall tissues. In the present study, we assessed the effect of prolonged chronic stress of the lungs in vivo on airway smooth muscle force generation, myosin light chain phosphorylation, and airway wall structure. To enhance the potential development of stress-induced structural changes, we applied mechanical stress for a prolonged period of time of 2-3 wk. Our results demonstrate a direct connection between the decreased airway responsiveness caused by chronic mechanical stress of the lungs in vivo and a persistent decrease in contractile protein activation in the airway smooth muscle isolated from those lungs. The chronic stress also caused an increase in airway size but no detectable changes in the composition of the airway wall.  相似文献   

3.
The effectiveness of targeting IL-13 in models where airway hyperresponsiveness (AHR) and airway inflammation have already been established is not well-described. We investigated the effects of blocking IL-13 on the early and late phase airway responses and the development of AHR in previously sensitized and challenged mice. BALB/cByJ mice were sensitized (days 1 and 14) and challenged (days 28-30) with OVA. Six weeks later (day 72), previously sensitized/challenged mice were challenged with a single OVA aerosol and the early and late phase response and development of AHR were determined. Specific in vivo blockade of IL-13 was attained after i.p. injection of a soluble IL-13Ralpha2-IgG fusion protein (sIL-13Ralpha2Fc) on days 71-72 for the early and late responses and on days 71-73 for the development of AHR. sIL-13Ralpha2Fc administration inhibited the late, but not early, phase response and the OVA challenge-induced changes in lung resistance and dynamic compliance; as well, sIL-13Ralpha2Fc administration decreased bronchoalveolar lavage eosinophilia and mucus hypersecretion following the secondary challenge protocols. These results demonstrate that targeting IL-13 alone regulates airway responses when administrated to mice with established allergic airway disease. These data identify the importance of IL-13 in the development of allergen-induced altered airway responsiveness following airway challenge, even when administered before rechallenge of mice in which allergic disease had been previously established.  相似文献   

4.
Airway hyperresponsiveness is a characteristic feature in asthmatic subjects, but the mechanism of the hyperresponsiveness is not known. The purpose of this study was to investigate whether methacholine airway responsiveness was increased 24 h after inhalation of adenosine 5'-monophosphate (AMP). Ten atopic asthmatic subjects and six atopic normal subjects were studied on 4 study days. On the 1st day, a methacholine inhalation test was performed, followed within 48 h by an AMP inhalation test. Seven days later the second AMP test was performed, and 24 h later the methacholine inhalation test was repeated. Response was measured using partial flow-volume curves, and the concentration required to cause a 40% fall in the partial flow-volume curve (PC40) was calculated. The geometric mean methacholine PC40 fell from 1.36 mg/ml on day 1 (before AMP inhalation) to 0.71 mg/ml on day 4 (24 h after AMP inhalation, P less than 0.01). There was no change in the mean PC40 for adenosine on the 2 study days (5.82 and 7.06 mg/ml, P greater than 0.1). These findings suggest that adenosine release may contribute to the increase in airway responsiveness after allergen challenge.  相似文献   

5.
Induction of hypertrophy and inhibition of apoptosis may be important mechanisms contributing to increased airway smooth muscle (ASM) mass in asthma. Data from our laboratory indicate that cardiotrophin-1 (CT-1) induces hypertrophy and inhibits apoptosis in isolated human ASM cells. To determine whether these novel effects of CT-1 also occur in the airway tissue milieu and to determine whether structural changes are accompanied by functional changes, matched pairs of guinea pig airway explants were treated with or without CT-1 for 7 days, and structural features as well as isometric and isotonic contractile and relaxant mechanical properties were measured. CT-1 (0.2-5 ng/ml) increased both myocyte mass and extracellular matrix in a concentration-dependent fashion. CT-1 (10 ng/ml)-treated tissues exhibited a significant increase in passive tension at all lengths on day 7; at optimal length, passive tension generated by CT-1-treated tissues was 1.72 +/- 0.12 vs. 1.0 +/- 0.1 g for control. Maximal isometric stress was decreased in the CT-1-treated group on day 7 (0.39 +/- 0.10 kg/cm(2)) vs. control (0.77 +/- 0.15 kg/cm(2), P < 0.05). Isoproterenol-induced relaxant potency was reduced in CT-1-treated tissues, log EC(50) being -7.28 +/- 0.34 vs. -8.12 +/- 0.25 M in control, P < 0.05. These data indicate that CT-1 alters ASM structural and mechanical properties in the tissue environment and suggest that structural changes found in the airway wall in asthma are not necessarily associated with increased responsiveness.  相似文献   

6.
IL-5 is a key cytokine for eosinophil maturation, recruitment, activation, and possibly the development of inflammation in asthma. High concentrations of IL-5 are present in the airway after Ag challenge, but the responsiveness of airway eosinophils to IL-5 is not well characterized. The objectives of this study were to establish, following airway Ag challenge: 1) the expression of membrane (m)IL-5Ralpha on bronchoalveolar lavage (BAL) eosinophils; 2) the responsiveness of these cells to exogenous IL-5; and 3) the presence of soluble (s)IL-5Ralpha in BAL fluid. To accomplish these goals, blood and BAL eosinophils were obtained from atopic subjects 48 h after segmental bronchoprovocation with Ag. There was a striking reduction in mIL-5Ralpha on airway eosinophils compared with circulating cells. Furthermore, sIL-5Ralpha concentrations were elevated in BAL fluid, but steady state levels of sIL-5Ralpha mRNA were not increased in BAL compared with blood eosinophils. Finally, BAL eosinophils were refractory to IL-5 for ex vivo degranulation, suggesting that the reduction in mIL-5Ralpha on BAL eosinophils may regulate IL-5-mediated eosinophil functions. Together, the loss of mIL-5Ralpha, the presence of sIL-5Ralpha, and the blunted functional response (degranulation) of eosinophils to IL-5 suggest that when eosinophils are recruited to the airway, regulation of their functions becomes IL-5 independent. These observations provide a potential explanation for the inability of anti-IL-5 therapy to suppress airway hyperresponsiveness to inhaled Ag, despite a reduction in eosinophil recruitment.  相似文献   

7.
T-cell-mediated airway inflammation is considered to be critical in the pathogenesis of airway hyperresponsiveness (AHR). We have described a mouse model in which chronic allergen exposure results in sustained AHR and aspects of airway remodeling and here sought to determine whether eliminating CD4(+) and CD8(+) cells, at a time when airway remodeling had occurred, would attenuate this sustained AHR. Sensitized BALB/c mice were subjected to either brief or chronic periods of allergen exposure and studied 24 h after brief or 4 wk after chronic allergen exposure. In both models, mice received three treatments with anti-CD4 and -CD8 monoclonal antibodies during the 10 days before outcome measurements. Outcomes included in vivo airway responsiveness to intravenous methacholine, CD4(+) and CD8(+) cell counts of lung and spleen using flow cytometric analysis, and airway morphometry using a computer-based image analysis system. Compared with saline control mice, brief allergen challenge resulted in AHR, which was eliminated by antibody treatment. Chronic allergen challenge resulted in sustained AHR and indexes of airway remodeling. This sustained AHR was not reversed by antibody treatment, even though CD4(+) and CD8(+) cells were absent in lung and spleen. These results indicate that T-cell-mediated inflammation is critical for development of AHR associated with brief allergen exposure, but is not necessary to maintain sustained AHR.  相似文献   

8.
We previously demonstrated that airway responsiveness is greater in immature than in mature rabbits; however, it is not known whether there are maturational differences in the effect of transpulmonary pressure (Ptp) on airway size and airway responsiveness. The relationship between Ptp and airway diameter was assessed in excised lungs insufflated with tantalum powder. Diameters of comparable intraparenchymal airway segments were measured from radiographs obtained at Ptp between 0 and 20 cmH(2)O. At Ptp > 8 cmH(2)O, the diameters were near maximal in both groups. With diameter normalized to its maximal value, changing Ptp between 8 and 0 cmH(2)O resulted in a greater decline of airway caliber in immature than mature airways. The increases in lung resistance (RL) in vivo at Ptp of 8, 5, and 2 cmH(2)O were measured during challenge with intravenous methacholine (MCh: 0.001-0.5 mg/kg). At Ptp of 8 cmH(2)O, both groups had very small responses to MCh and the maximal fold increases in RL did not differ (1.93 +/- 0.29 vs. 2.23 +/- 0.19). At Ptp of 5 and 2 cmH(2)O, the fold increases in RL were greater for immature than mature animals (13.19 +/- 1.81 vs. 3.89 +/- 0.37) and (17.74 +/- 2.15 vs. 4.6 +/- 0.52), respectively. We conclude that immature rabbits have greater airway distensibility and this difference may contribute to greater airway narrowing in immature compared with mature rabbits.  相似文献   

9.
The dog model of ascaris airway sensitivity was chosen because of its frequency and its immunologic similarity to the human atopic asthmatic state. We studied the mediators of the antigen-induced airway response in vitro and the alterations in the in vivo and in vitro responsiveness to spasmogens evoked by antigen challenge. A myogenic basis of altered reactivity was suggested by the following: tetrodotoxin-insensitive spontaneous active tone; phasic contractions of airway smooth muscle; and responsiveness to leukotrienes C4 and D4. The pharmacologic characteristics of the antigen-induced airway smooth muscle contraction in vitro were similar to those induced by arachidonic acid and the leukotrienes only in some respects but were clearly different from those induced by compound 48/80. This suggested a predominant role for arachidonate lipoxygenase products. Histamine appeared to play a minor role in the antigen response. Comparisons were made between antigen-induced responses of actively and passively sensitized airways tissues. In the latter, histamine release appeared to contribute to the initial antigen-induced contraction and, unlike in actively sensitized airways, the responses were easily desensitized to repeated challenge. Alterations of airway responsiveness were demonstrated in vivo to acetylcholine and 5-HT following antigen challenge of highly ascaris-sensitive dogs. In vitro studies of passively sensitized muscle showed selectively enhanced response to 5-HT following antigen challenge. These studies support the presence of altered myogenic properties of airway smooth muscle and nonspecific increased airway responsiveness in this animal model.  相似文献   

10.
Pharmacological inhibition or genetic disruption of cyclooxygenase (COX)-1 or COX-2 exacerbates the inflammatory and functional responses of the lung to environmentally relevant stimuli. To further examine the contribution of COX-derived eicosanoids to basal lung function and to allergic lung inflammation, transgenic (Tr) mice were generated in which overexpression of human COX-1 was targeted to airway epithelium. Although no differences in basal respiratory or lung mechanical parameters were observed, COX-1 Tr mice had increased bronchoalveolar lavage fluid PGE(2) content compared with wild-type littermates (23.0 +/- 3.6 vs 8.4 +/- 1.4 pg/ml; p < 0.05) and exhibited decreased airway responsiveness to inhaled methacholine. In an OVA-induced allergic airway inflammation model, comparable up-regulation of COX-2 protein was observed in the lungs of allergic wild-type and COX-1 Tr mice. Furthermore, no genotype differences were observed in allergic mice in total cell number, eosinophil content (70 vs 76% of total cells, respectively), and inflammatory cytokine content of bronchoalveolar lavage fluid, or in airway responsiveness to inhaled methacholine (p > 0.05). To eliminate the presumed confounding effects of COX-2 up-regulation, COX-1 Tr mice were bred into a COX-2 null background. In these mice, the presence of the COX-1 transgene did not alter allergen-induced inflammation but significantly attenuated allergen-induced airway hyperresponsiveness, coincident with reduced airway leukotriene levels. Collectively, these data indicate that COX-1 overexpression attenuates airway responsiveness under basal conditions but does not influence allergic airway inflammation.  相似文献   

11.
Beta-adrenergic receptor antagonists are currently used as first-line therapy in the treatment of hypertension and angina pectoris, but are contraindicated or used with caution in patients with bronchospastic syndromes. In this study we evaluated in vivo the effects of nebivolol on airway responsiveness compared to atenolol, pindolol, and propranolol. In New Zealand white rabbits total lung resistance (R(L)) and dynamic compliance (Cdyn) were calculated. In acute protocol, the animals were intravenously injected with the beta-blockers at different doses while in the chronic protocol, animals were daily injected for 30 days. Furthermore, the changes induced by beta-blockers (higher doses) in R(L) and Cdyn after a treatment with salbutamol were calculated. In acute treatment, airway responsiveness to histamine was not modified by nebivolol at any dosage, but increased significantly following the exposure to the higher doses of the other beta-blockers. In chronic treatment, the thirty-day exposure to nebivolol, did not modify the airway responsiveness to histamine, whereas the other beta-blockers significantly increased airway responsiveness. Moreover, nebivolol affected the salbutamol-induced relaxation less markedly than other beta-blockers do. These data demonstrate that nebivolol respect the other beta-blockers used in this study, does not significantly affect the airway responsiveness, therefore it could be used in patients with both cardiovascular and bronchial diseases more safely than other beta-blockers drugs.  相似文献   

12.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

13.
Oxidant stress modulates murine allergic airway responses   总被引:4,自引:0,他引:4  
The allergic inflammation occurring in asthma is believed to be accompanied by the production of free radicals. To investigate the role of free radicals and the cells affected we turned to a murine model of allergic inflammation produced by sensitization to ovalbumin with subsequent aerosol challenge. We examined oxidant stress by measuring and localizing the sensitive and specific marker of lipid peroxidation, the F2-isoprostanes. F2-isoprostanes in whole lung increased from 0.30 +/- 0.08 ng/lung at baseline to a peak of 0.061 +/- 0.09 ng/lung on the ninth day of daily aerosol allergen challenge. Increased immunoreactivity to 15-F2t-IsoP (8-iso-PGF2alpha) or to isoketal protein adducts was found in epithelial cells 24 h after the first aerosol challenge and at 5 days in macrophages. Collagen surrounding airways and blood vessels, and airway and vascular smooth muscle, also exhibited increased immunoreactivity after ovalbumin challenge. Dietary vitamin E restriction in conjunction with allergic inflammation led to increased whole lung F2-isoprostanes while supplemental vitamin E suppressed their formation. Similar changes in immunoreactivity to F2-isoprostanes were seen. Airway responsiveness to methacholine was also increased by vitamin E depletion and decreased slightly by supplementation with the antioxidant. Our findings indicate that allergic airway inflammation in mice is associated with an increase in oxidant stress, which is most striking in airway epithelial cells and macrophages. Oxidant stress plays a role in the production of airway responsiveness.  相似文献   

14.
We have found a novel anti-allergic agent, M50367, which suppresses IgE biosynthesis and eosinophil accumulation in vivo. In this study, we evaluated the ability of M50367 to modulate Th1/Th2 balance in Th2-background BALB/c mice and to inhibit airway hyperresponsiveness in a murine model of atopic asthma. Oral M50367 at 3-30 mg/kg/day exhibited 51 to 73% reduction of IL-4/IL-5 production and 2- to 5-fold augmentation of IFN-gamma production by Ag-stimulated cultured splenocytes of the mice sensitized with DNP-Ascaris. These alterations in Th1/Th2 cytokine production were accompanied by 55-85% suppression of plasma IgE level. Oral M50367 at a dose of 10 mg/kg/day significantly inhibited Ig-independent peritoneal eosinophilia by 54%, which was induced by repeated i.p. injections of Ascaris suum extract. To develop airway hyperresponsiveness caused by allergic airway inflammation, BALB/c mice were sensitized with i.p. OVA injections, followed three times by OVA inhalation. Oral M50367 significantly inhibited the increase in airway reactivity to acetylcholine, together with the elevation of plasma IgE level and pulmonary eosinophilia, which were observed in vehicle-treated mice 1 day after the last inhalation. Moreover, M50367 treatment reduced IL-4 and IL-5 production and tended to enhance IFN-gamma production, not only by cultured splenocytes, but also in bronchoalveolar lavage fluid. These results suggest that M50367 has a modulating ability of Th1/Th2 balance to down-regulate Th2 response in the circulating system as well as at the sites of inflammation, and may be beneficial for the treatment of allergic disorders such as atopic asthma.  相似文献   

15.
We studied whether antigen-induced airway hyperresponsiveness was associated with pulmonary inflammation in 11 anesthetized ragweed-sensitized dogs. Airway responsiveness to acetylcholine aerosol was determined before and at 2, 6, and 24 h after ragweed or sham aerosol challenge. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) performed at either 2 or 6 h. Total pulmonary resistance increased 11-fold at 5 min after ragweed. Airway responsiveness was unchanged at 2 h but was increased 6.6-fold at 6 h in 8 of 11 dogs (P less than 0.001); hyperresponsiveness persisted from 4 days to 4 mo. Airway responsiveness was unchanged by aerosols of diluent. Neutrophils in BAL fluid increased approximately sixfold at 2 h (P less than 0.02) and at 6 h (P less than 0.02) after antigen challenge. There were fewer eosinophils in fluid recovered at 6 h after antigen compared with 2 h lavages (P less than 0.05). In three nonresponders, BAL showed no significant changes in neutrophils and eosinophils after antigen. Thus antigen-induced hyperresponsiveness is associated with the presence of pulmonary inflammation, presumably arising from the airways and involving both neutrophils and eosinophils.  相似文献   

16.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

17.
Tryptase inhibition blocks airway inflammation in a mouse asthma model   总被引:11,自引:0,他引:11  
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation.  相似文献   

18.
Heme oxygenase (HO), the heme-degrading enzyme, has shown anti-inflammatory effects in several models of pulmonary diseases. HO is induced in airways during asthma; however, its functional role is unclear. Therefore, we evaluated the role of HO on airway inflammation [evaluated by bronchoalveolar lavage (BAL) cellularity and BAL levels of eotaxin, PGE(2), and proteins], mucus secretion (evaluated by analysis of MUC5AC gene expression and periodic acid-Schiff staining), oxidative stress (evaluated by quantification of 4-hydroxynonenal adducts and carbonylated protein levels in lung homogenates), and airway responsiveness to histamine in ovalbumin (OVA)-sensitized and multiple aerosol OVA or saline-challenged guinea pigs (6 challenges, once daily, OVA group and control group, respectively). Airway inflammation, mucus secretion, oxidative stress, and responsiveness were significantly increased in the OVA group compared with the control group. HO upregulation by repeated administrations of hemin (50 mg/kg i.p.) significantly decreased airway responsiveness in control animals and airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These effects were reversed by the concomitant administration of the HO inhibitor tin protoporphyrin-IX (50 micromol/kg i.p.). Repeated administrations of tin protoporphyrin-IX alone significantly increased airway responsiveness in control animals but did not modify airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These results suggest that upregulation of the HO pathway has a significant protective effect against airway inflammation, mucus hypersecretion, oxidative stress, and hyperresponsiveness in a model of allergic asthma in guinea pigs.  相似文献   

19.
Obstructive sleep apnea syndrome (OSAS) causes intermittent hypoxia and increases in sympathetic activity and contributes to cardiovascular disorders. Interleukin-6 (IL-6) is one of the important proinflammatory cytokines. We examined the levels of serum IL-6 concentrations in nine patients with severe OSAS at four different clock times during the 24 h before and after three months of continuous positive airway pressure (CPAP) therapy. Serum IL-6 levels were significantly reduced after CPAP therapy by 46% (6.2+/-1.0 vs. 3.3+/-0.4 pg/ml, p<0.005). No significant 24 h variation of serum IL-6 in severe OSAS patients was found before CPAP; however, a significant 24 h variation of serum IL-6 was found after CPAP. Intermittent hypoxia during sleep may contribute to systemic inflammation and result in an elevation of serum IL-6 in severe OSAS patients.  相似文献   

20.
Adenosine-induced bronchoconstriction is a well-recognized feature of atopic asthma. Adenosine acts through four different G protein-coupled receptors to produce a myriad of physiological effects. To examine the contribution of the A(3) adenosine receptor to adenosine-induced bronchoconstriction and to assess the contribution of mast cells to this process, we quantified airway responsiveness to aerosolized adenosine in wild-type, A(3) receptor-deficient, and mast cell-deficient mice. Compared with the robust airway responses elicited by adenosine in wild-type mice, both A(3)-deficient and mast cell-deficient mice exhibited a significantly attenuated response compared with their respective wild-type controls. Histological examination of the airways 4 h after adenosine exposure revealed extensive degranulation of airway mast cells as well as infiltration of neutrophils in wild-type mice, whereas these findings were much diminished in A(3)-deficient mice and were not different from those in PBS-treated controls. These data indicate that the airway responses to aerosolized adenosine in mice occur largely through A(3) receptor activation and that mast cells contribute significantly to these responses, but that activation of additional adenosine receptors on a cell type(s) other than mast cells also contributes to adenosine-induced airway responsiveness in mice. Finally, our findings indicate that adenosine exposure can result in A(3)-dependent airway inflammation, as reflected in neutrophil recruitment, as well as alterations in airway function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号