首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
This paper describes the preparation of lung acellular alveolar matrix fragments and culture of rat type II pneumocytes directly on the alveolar epithelial basement membrane, thereby permitting study of the effect of lung basement membrane on the morphology and function of type II cells. Collagen types I, III, IV and V, laminin and fibronectin were located by immunofluorescence in the lung matrix with the same patterns as those described for the normal human lung. Transmission electron microscopy (TEM) of the fragments revealed intact epithelial and endothelial basement membranes. The matrix maintained the normal three-dimensional alveolar architecture. Glycosaminoglycans were still present by Alcian Blue staining. Isolated adult rat type II pneumocytes cultured on 150 micron thick fragments of acellular human alveolar extracellular matrix undergo gradual cytoplasmic flattening, with loss of lamellar bodies, mitochondria, and surface microvilli. These changes are similar to the in vivo differentiation of type II pneumocytes into type I pneumocytes. The type II pneumocyte behaviour on the lung epithelial basement membrane contrasted sharply with that of the same cell type cultured on a human amnionic basement membrane. On the latter surface the cells retained their cuboidal shape, lamellar bodies and surface microvilli for up to 8 days. These observations suggest that the basement membranes from different organ systems exert differing influences on the morphology and function of type II pneumocytes and that the alveolar and amnionic basement membranes may have differing three-dimensional organizations. The technique of direct culture of type II cells on the lung basement membrane provides a useful tool for studying the modulating effect of the basement membrane on alveolar epithelial cells.  相似文献   

3.
Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman’s capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption.  相似文献   

4.
Non-muscle alpha-dystroglycan is involved in epithelial development   总被引:8,自引:3,他引:5       下载免费PDF全文
The dystroglycan complex is a transmembrane linkage between the cytoskeleton and the basement membrane in muscle. One of the components of the complex, alpha-dystroglycan binds both laminin of muscle (laminin-2) and agrin of muscle basement membranes. Dystroglycan has been detected in nonmuscle tissues as well, but the physiological role in nonmuscle tissues has remained unknown. Here we show that dystroglycan during mouse development in nonmuscle tissues is expressed in epithelium. In situ hybridization revealed strong expression of dystroglycan mRNA in all studied epithelial sheets, but not in endothelium or mesenchyme. Conversion of mesenchyme to epithelium occurs during kidney development, and the embryonic kidney was used to study the role of alpha-dystroglycan for epithelial differentiation. During in vitro culture of the metanephric mesenchyme, the first morphological signs of epithelial differentiation can be seen on day two. Northern blots revealed a clear increase in dystroglycan mRNA on day two of in vitro development. A similar increase of expression on day two was previously shown for laminin alpha 1 chain. Immunofluorescence showed that dystroglycan is strictly located on the basal side of developing kidney epithelial cells. Monoclonal antibodies known to block binding of alpha-dystroglycan to laminin-1 perturbed development of epithelium in kidney organ culture, whereas control antibodies did not do so. We suggest that the dystroglycan complex acts as a receptor for basement membrane components during epithelial morphogenesis. It is likely that this involves binding of alpha- dystroglycan to E3 fragment of laminin-1.  相似文献   

5.
T C Wu  Y J Wan  I Damjanov 《Histochemistry》1983,77(2):233-241
Fluorescein isothiocyanate labelled type I lectin from Bandeiraea simplicifolia (BSA-I) known for its specific binding to alpha-D-galactopyranosyl and 2-acetamido-2-deoxy-D-galactose groups, has been used to map the distribution of the lectin specific binding sites in the genital organs of female and male mice. In non-pregnant female mice, strong lectin reactivity was restricted to the epithelium of the distal oviduct, the cervix and vagina. In pregnant mice strong BSA-I reactivity was also noted in the epithelium of uterine glands from the time of implantation on day 5 onward. In the testis BSA-I bound selectively to sperm but did not react with other cells in the seminiferous tubules. In the proximal caput epididymis BSA-I reacted with the epithelial cells, the underlying basement membranes and the intraluminal sperm. The intraluminal contents of the seminal vesicles reacted strongly with the lectin. Our data thus show a widespread but selective distribution of BSA-I lectin binding sites in the male and female genital organs and altered lectin binding in the uterus during pregnancy.  相似文献   

6.
《The Journal of cell biology》1989,109(6):3477-3491
To examine the ultrastructural distribution of laminin within kidney basement membranes, we prepared rat anti-mouse laminin mAbs to use in immunolocalization experiments. Epitope domains for these mAbs were established by immunoprecipitation, immunoblotting, affinity chromatography, and rotary shadow EM. One mAb bound to the laminin A and B chains on blots and was located to a site approximately 15 nm from the long arm-terminal globular domain as shown by rotary shadowing. Conjugates of this long arm-specific mAb were coupled to horseradish peroxidase (HRP) and intravenously injected into mice. Kidney cortices were fixed for microscopy 3 h after injection. HRP reaction product was localized irregularly within the renal glomerular basement membrane (GBM) and throughout mesangial matrices. In addition, this mAb bound in linear patterns specifically to the laminae rarae of basement membranes of Bowman's capsule and proximal tubule. This indicates the presence of the long arm immediately beneath epithelial cells in these sites. The laminae densae of these basement membranes were negative by this protocol. In contrast, the lamina rara and densa of distal tubular basement membranes (TBM) were both heavily labeled with this mAb. A different ultrastructural binding pattern was seen with eight other mAbs, including two that mapped to different sites on the short arms by rotary shadowing and five that blotted to a large pepsin-resistant laminin fragment (P1). These latter mAbs bound weakly or not at all to GBM but all bound throughout mesangial matrices. In contrast, discrete spots of HRP reaction product were seen across all layers of Bowman's capsule BM and proximal TBM. These same mAbs, however, bound densely across the full width of distal TBM. Our findings therefore show that separate strata of different basement membranes are variably immunoreactive to these laminin mAbs. The molecular orientation or integration of laminin into the three dimensional BM meshwork therefore varies with location. Alternatively, there may be a family of distinct laminin-like molecules distributed within basement membranes.  相似文献   

7.
When tissues are processed for electron microscopy by conventional methods, such as glutaraldehyde fixation followed by rapid dehydration in acetone, basement membranes show two main layers: the electron-lucent lamina lucida (or rara) and the electrondense lamina densa. In an attempt to determine whether this subdivision is real or artefactual, two approaches have been used. Firstly, rat and mouse seminiferous tubules, mouse epididymis and associated tissues, and anterior parts of mouse eyes were subjected to cryofixation by instant freezing followed by freeze substitution in a-80° C solution of osmium tetroxide in dry acetone, which was gradually warmed to room temperature over a 3-day period. The results indicate that, in areas devoid of ice crystals, basement membranes consist of a lamina densa in direct contact with the plasmalemma of the associated cells without an intervening lamina lucida. Secondly, a series of tissues from mice perfused with 3% glutaraldehyde were cryoprotected in 30% glycerol, frozen in Freon 22 and subjected to a 3-day freeze substitution in osmium tetroxide-acetone as above. Under these conditions, no lamina lucida accompanies the lamina densa in the basement membranes of the majority of tissues, including kidney, thyroid gland, smooth and skeletal muscle, ciliary body, seminiferous tubules, epididymis and capillary endothelium. Thus, even though these tissues have been fixed in glutaraldehyde, no lamina lucida appears when they are slowly dehydrated by freeze substitution. It is concluded that the occurrence of this lamina in conventionally processed tissues is not due to fixation but to the rapid dehydration. However, in this series of experiments, the basement membranes of trachea and plantar epidermis include a lamina lucida along their entire length, while those of esophagus and vas deferens may or may not include a lamina lucida. To find out if the lamina lucida appearing under these conditions is a real structure or an artefact, the trachea and epidermis were fixed in paraformaldehyde and slowly dehydrated by freeze substitution. Under these conditions, no lamina lucida was found. Since this result is the same as observed in other tissues by the previous approaches, it is proposed that the lamina lucida is an artefact in these as in the other investigated basement membranes. Thus, basement membranes are simply composed of a lamina densa that closely follows the plasmalemma of the associated cells. At high magnification, the lamina densa consists of a tridimensional network of cords, while the plasmalemma is covered by a glycocalyx; close contact is observed between cords and glycocalyx and is interpreted by assuming that the laminin present in the cords binds to laminin receptors in the glycocalyx.  相似文献   

8.
The final outcome of tube elongation and branching is to maximize the epithelial exchange surfaces in tubular organs. The molecular and cellular basis of these processes is actively studied in model organs such as mammary glands, liver and kidney, but they remain almost unexplored in the male reproductive tract. Here, we report that the orphan G protein-coupled receptor LGR4/GPR48 plays a role in the postnatal tissue remodeling needed for elongation and convolution of the efferent ducts and epididymis. In LGR4 knockout male mice, tube elongation fails, resulting in a hypoplastic and poorly convoluted tract. Cell proliferation is dramatically reduced in KO affected tissues, providing an explanation to the observed phenotype. Detailed analysis showed that LGR4 inactivation manifests differently in the affected organs. In efferent ducts, immune cells infiltrate the epithelium and reach the lumen, blocking the transit of sperm and testicular fluid. In addition, the hypoplasia and low convolution result in a reduction of the epithelial area involved in liquid reabsorption. Both phenomena contribute in tissue swelling upstream the blockade due to liquid and sperm accumulation, with secondary damaging effects on the germinal epithelium. In the epididymis, the thin and highly convoluted duct is replaced by a large cystic tube which is surrounded by a thick condensation of mesenchymal cells. The abnormal organization of the cellular compartments in and around the ducts suggests that LGR4 might play a role in epithelial-mesenchymal interactions. Altogether, our data identify LGR4 as an important signaling molecule implicated in the tube morphogenesis of the male reproductive tract.  相似文献   

9.
The extracellular presence of adenosine polyphosphatase was investigated in a number of rat tissues. The enzyme was demonstrated in basement membranes of epithelial cells of duodenum, urinary bladder, tongue, choroid plexus, submandibular salivary gland, lung and kidney, as well as in basement membranes of capillaries in these tissues. Furthermore adenosine polyphosphatase was demonstrated on collagen fibrils and in the cytoplasm of fibroblasts of all investigated tissues. It appears that the presence of adenosine polyphosphatase in basement membranes is a widespread phenomenon. Since extracellular ADP and ATP are known to promote respectively platelet aggregation and inflammation, the presence of extracellular ADP and ATP-hydrolyzing activity might contribute to inhibit these processes.  相似文献   

10.
11.
A previous study using mice null for Gpx4 indicates that PHGPx plays a critical role in antioxidant defense and is essential for the survival of the mouse. In the present study, we further analyzed the stress response of MEFs (murine embryonic fibroblasts) derived from mice heterozygous for the Gpx4 gene (Gpx4(+/-) mice). MEFs from Gpx4(+/-) mice have a 50% reduction in PHGPx expression without any changes in the activities of other major antioxidant defense enzymes. Compared to MEFs from Gpx4(+/+) mice, MEFs from Gpx4(+/-) mice were more sensitive to exposure to the oxidizing agent t-butyl hydroperoxide (t-BuOOH), and t-BuOOH exposure induced increased apoptosis in MEFs from Gpx4(+/-) mice. When cultured at low cell density, MEFs from Gpx4(+/-) mice also showed retarded growth under normal culture conditions (20% oxygen) that was reversed by culturing under low oxygen (2% oxygen). In addition, oxidative damage was increased in the MEFs from the Gpx4(+/-) mice, as indicated by increased levels of F(2)-isoprostanes and 8-oxo-2-deoxyguanosine in these cells. Our data demonstrate that MEFs from Gpx4(+/-) mice are more sensitive to oxidative stress because of reduced expression of PHGPx.  相似文献   

12.
We have identified a protein(s) on the surface of hepatocytes that binds to the core protein of the heparan sulfate proteoglycan of basement membranes. These cells attached and spread on substrates prepared from the basement membrane heparan sulfate proteoglycan (HSPG) and its core protein (HSPG-core). Three proteins (Mr = 38,000, 36,000, and 26,000) were found to bind to a HSPG-core affinity column using extracts of iodinated hepatocytes, whereas proteins extracted from isolated membranes contained primarily the larger protein (Mr = 38,000). Similar results were obtained using a solid phase binding technique using labeled HSPG-core. Binding of HSPG-core to the protein (Mr = 38,000) was not altered by the presence of an excess of heparin, heparan sulfate, fibronectin, laminin, or collagen IV but was reduced by unlabeled HSPG-core. Similar studies showed that the binding protein (Mr = 3,0000) was present in extracts from the membranes of Engelbreth-Holm-Swarm tumor cells, Madin-Darby canine kidney cells, COS cells, melanoma cells, and rat kidney epithelial cells but not in fibroblasts. The protein was found in increased amounts in 3T3 cells treated with retinoic acid. These observations suggest that a variety of cells that contact basement membrane contain the proteoglycan-binding protein.  相似文献   

13.
An amiloride binding protein in adult rat and rabbit alveolar type II (ATII) cells was characterized using three different antibodies against epithelial Na+ channel proteins. We found that 1) polyclonal antibodies raised against epithelial Na+ channel proteins from bovine kidney cross-react with a 135-kDa protein in ATII membrane vesicles on Western blots; 2) using the photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), in combination with anti-amiloride antibodies, we found that NMBA specifically labeled the same M(r) protein; and 3) monoclonal anti-idiotypic antibodies directed against anti-amiloride antibodies also recognized this same M(r) protein on Western blots. We also demonstrated a low benzamil affinity binding site (apparent Kd = 370 nM) in rabbit ATII cell membranes and both high and low benzamil affinity binding sites (apparent Kd = 6 nM and 230 nM) in bovine kidney membranes using [3H]Br-benzamil as a ligand. Pharmacological inhibitory profiles for displacing bound [3H]Br-benzamil were also different between ATII cells and bovine kidneys. These observations indicate that adult ATII pneumocytes express a population of epithelial Na+ channels having a low affinity to benzamil and amiloride and a pharmacological inhibitory profile different from that in bovine kidney.  相似文献   

14.
We have investigated the toxic effects of trichloroethylene (TCE) on the epididymis and epididymal sperm in mice. Mice were exposed to TCE (1000 ppm) by inhalation for 6 h/day for 5 days/week for 1 to 4 weeks. Segments of the epididymis (caput, corpus and cauda) were examined by light and electron microscopy. At the light microscopic level, degeneration and sloughing of epithelial cells were evident as early as 1 week after TCE exposure, and were most pronounced after 4 weeks. Such epithelial damage was observed in the caput, corpus and cauda regions of the epididymis. Ultrastructural observations revealed vesiculation in the cytoplasm, disintegration of basolateral cell membranes, and sloughing of epithelial cells. Sperm were found in situ in the cytoplasm of degenerated epididymal cells. Additionally, a large number of sperm in the epididymal lumen exhibited abnormalities including malformation of head and tail components. Our results demonstrated that exposure to TCE by inhalation causes damage to the epididymal epithelium and sperm.  相似文献   

15.
In vivo micropuncture and a new system of in vivo microperifusion were used to examine the movement of 3H-androgen from blood to lumen and from interstitum to lumen in the rat testis and epididymis. Movement of 3H-androgen into the seminiferous tubule lumen was restricted, with intraluminal isotope concentrations plateauing at approximately 15% of extratubular isotope concentrations whether the 3H-androgen originated in the vascular or interstitial compartments. In the caput epididymidis, intraluminal 3H-androgen plateaued at approximately 35% of serum concentrations, but when 3H-androgens were presented directed to the basal aspect of the caput epididymidal epithelium, 3H-androgen was transported into the lumen against a concentration gradient. Intraluminal isotope concentrations were greater than 200% of those in the epididymal interstitial compartment. Similar results were found for the cauda epididymids. Factors controlling the proluminal movement of 3H-androgens in the rat testis and epididymis were therefore fundamentally different.  相似文献   

16.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen type IV networks. Recently a new member of the nidogen family, nidogen-2, has been characterized. Preliminary immunohistochemical data indicated that nidogen-1 and nidogen-2 show a similar tissue distribution at the light microscopic level. We have now localized nidogen-1 and nidogen-2, as well as their corresponding mRNAs, at the light and electron microscopic levels in adult mouse kidney, by in situ hybridization and immunogold histochemistry, as well as carrying out double labeling with laminin-1. Both nidogen-1 and nidogen-2 mRNAs are found not only in mesenchymal cells of embryonic tissues, but also in all epithelial and endothelial cells in adult mouse kidney. Both nidogens are ubiquitous basement membrane components in the mouse kidney, being found in glomerular, tubular, and capillary compartments and Bowman’s capsule. Furthermore, a substantial fraction of nidogen-1 and nidogen-2 colocalizes with laminin-1. The results indicate that nidogen-1 and nidogen-2 could well substitute for one another in some of their biological activities in kidney, for example, stabilizing basement membrane networks in vivo. Accepted: 8 December 1999  相似文献   

17.
Summary In the present work we localized binding sites for the lectins WGA, RCA I, con A and SBA at the ultrastructural levels in morphologically different basement membranes. These different basement membranes included (a) thin ones, for example, tubular basement membrane of the mouse kidney which separates epithelial cell layers from mesenchymal cells and glomerular basement membrane which separates epithelial cells from other epithelial cells, (b) thick multilayered ones, for example, Reichert's membrane which is built up during the embryonic development of rodents and as an example of a pathologically thickened basement membrane, the basement membrane of the Engelbreth-Holm-Swarm (EHS) sarcoma. We were able to show that, in contrast to the thick multilayered basement membranes, the thin ones showed a strong positive SBA-binding pattern. Thick basement membranes otherwise revealed very strong labelling with the lectins WGA and RCA I. Our findings lead us to conclude that thin and thick basement membranes differ markedly in the quality and quantity of the carbohydrates which they contain.  相似文献   

18.
Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.  相似文献   

19.
Two glycoproteins, GP-1 and GP-2, have been isolated from an extracellular membrane synthesized in cell culture by an embryonal carcinoma-derived cell line. The amino acid and carbohydrate compositions have been determined. Both proteins are rich in half-cystine residues and contain approximately 12-15% carbohydrate. Antibodies have been obtained against one of the glycoproteins, GP-2, in rabbits. The antibody reacts with basement membranes from adult mouse and human kidney glomeruli and tubules, and all basement membranes tested from mouse embryonic tissues. The molecular properties of GP-2 are superficially similar to LETS protein; however, immunological and other criteria show that they are distinct proteins. The presence of LETS protein and GP-2 in basement membranes suggests that there are subtle interactions which are important in adhesion of epithelial cells to basement membranes.  相似文献   

20.
Basement membranes are distributed widely in the body forming an extracellular matrix for epithelial and endothelial cells. The collagenous and glycoprotein constituents of basement membranes are synthesized by these two cell types. Disturbance of the interactions between basement membranes and their associated epithelial and endothelial cells can lead to the pathological changes seen in diseases involving basement membranes. These changes are illustrated here by reference to glomerulonephritis induced by the deposition of immune complexes in the glomerulus of the kidney, and chronic inflammatory changes occurring in the lung after inhalation of asbestos. In these diseases basement membrane changes can occur in several ways. Hydrolytic enzymes released from inflammatory cells degrade basement membranes while other constituents by epithelial and endothelial cells. Alternatively the physical separation of epithelial and endothelial cells from their basement membrances by space-occupying substances such as immune complexes can interfere with feedback mechanisms leading to synthesis of basement membrane constituents and cell proliferation. Studies of these pathological changes at a cellular level should shed new light on the ways in which cells interact with their pericellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号