首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of genetic selection for high wheel running (13th generation) and prolonged access (8 weeks) to running wheels on food consumption and body composition were studied in house mice (Mus domesticus). Mice from four replicate lines selected for high wheel-running activity ran over twice as many revolutions per day on activity wheels as did mice from four replicate control lines. At approximately 49 days of age, all mice were placed individually in cages with access to wheels and monitored for 6 days, after which wheels were prevented from rotating for the "sedentary" individuals. During the experiment, five feeding trials were conducted and body mass was measured weekly. After 8 weeks, body composition was measured by hydrogen isotope dilution. Across the five feeding trials, mice in the "active" group (wheels free to rotate) consumed 22.4% more food than mice in the "sedentary" group (wheels locked); mice from the selected lines consumed 8.4% more food than mice from the control lines (average of all trials; body mass-corrected values). In females, but not males, we found a significant interaction between selection and wheel access treatments: within the "active" group the difference in food consumption between selected and control animals was greater than in the "sedentary" group. At the end of the study, mice from the "active" and "sedentary" groups did not differ significantly in body mass; however, mice from the selected lines were approximately 6% smaller in body mass. Estimated lean body mass did not differ significantly either between selected and control lines or between wheel-access groups (P>0.3). Mice from selected lines had lower total body fat compared to mice from control lines (P=0.05; 24.5% reduction; LSMEANS) as did mice from the "active" compared to "sedentary" group (P= 0.03; 29.2% reduction; LSMEANS). Under these conditions, a sufficient explanation for the difference in body mass between the selected and control lines was the difference in fat content.  相似文献   

2.
We have developed a novel model to study the correlated evolution of behavioural and morphophysiological traits in response to selection for increased locomotor activity. We used selective breeding to increase levels of voluntary wheel running in four replicate lines of laboratory house mice, Mus domesticus, with four random-bred lines maintained as controls. The experiment presented here tested for correlated behavioural responses in the wheel-cage complex, with wheels either free to rotate or locked (environmental factor). After 13 generations, mice from selected lines ran 2.2 times as many revolutions/day as controls on days 5 and 6 of initial exposure to wheels (10 826 versus 4890 revolutions/day, corresponding to 12.1 and 5.5 km/day, respectively). This increase was caused primarily by mice from selected lines running faster, not more minutes per day. Focal-animal observations confirmed that the increase in revolutions/day involved more actual running (or climbing in locked wheels), not an increase in coasting (or hanging). Not surprisingly, access to free versus locked wheels had several effects on behaviour, including total time spent in wheels, sniffing and biting. However, few behaviours showed statistically significant differences between the selected and control lines. Selection did not increase the total time spent in wheels (either free or locked), the frequency of nonlocomotor activities performed in the wheels, nor the amount of locomotor activity in cages attached to the wheels; as well, selection did not decrease the amount of time spent sleeping. Thus, wheel running is, at the genetic level, a largely independent axis of behaviour. Moreover, the genetic architecture of overall wheel running and its components seem conducive to increasing total distance moved without unduly increasing energy or time-related costs. The selection experiment also offers a new approach to study the proximate mechanisms of wheel-running behaviour itself. For example, frequencies of sniffing and wire biting were reduced in selected females but not males. This result suggests that motivation or function of wheel running may differ between the sexes. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

3.
We studied rectal body temperatures of house mice (Mus domesticus) that had been artificially selected for high voluntary wheel running.1. At generation 17, mice from the four replicate selected lines ran, on average, 2.5-times as many revolutions/day as did mice from the four random-bred control lines.2. During the day, repeatability of individual differences in body temperature measured 4 days apart was low; at night, repeatability was statistically significant across three time scales (1 day, 1 week, 2 weeks).3. During the day, body temperatures of selected and control animals did not differ; at night, mice from selected lines had higher body temperatures. However, when amount of wheel running immediately prior to measurement was included as a covariate, the difference was no longer statistically significant.Higher body temperatures, associated with increased activity, might enhance locomotor abilities through Q10 effects, increase metabolic rate and food requirements, affect sleep patterns, and alter expression of heat-shock proteins.  相似文献   

4.
Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two-way analysis of covariance revealed significant interactions between line type and activity group; for several enzymes, activities showed greater changes in mice from selected lines, presumably because such mice ran more revolutions per day and at greater velocities. Thus genetic selection for increased voluntary wheel running did not reduce the capability of muscle aerobic capacity to respond to training.  相似文献   

5.
After 14 generations of selection for voluntary wheel running, mice from the four replicate selected lines ran, on average, twice as many revolutions per day as those from the four unselected control lines. To examine whether the selected lines followed distinct strategies in the correlated responses of the size and metabolic capacities of the hindlimb muscles, we examined mice from selected lines, housed for 8 wk in cages with access to running wheels that were either free to rotate ("wheel access" group) or locked ("sedentary"). Thirteen of twenty individuals in one selected line (line 6) and two of twenty in another (line 3) showed a marked reduction ( approximately 50%) in total hindlimb muscle mass, consistent with the previously described expression of a small-muscle phenotype. Individuals with these "mini-muscles" were not significantly smaller in total body mass compared with line-mates with normal-sized muscles. Access to free wheels did not affect the relative mass of the mini-muscles, but did result in typical mammalian training effects for mitochondrial enzyme activities. Individuals with mini-muscles showed a higher mass-specific muscle aerobic capacity as revealed by the maximal in vitro rates of citrate synthase and cytochrome c oxidase. Moreover, these mice showed the highest activities of hexokinase and carnitine palmitoyl transferase. Females with mini-muscles showed the highest levels of phosphofructokinase, and males with mini-muscles the highest levels of pyruvate dehydrogenase. As shown by total muscle enzyme contents, the increase in mass-specific aerobic capacity almost completely compensated for the reduction caused by the "loss" of muscle mass. Moreover, the mini-muscle mice exhibited the lowest contents of lactate dehydrogenase and glycogen phosphorylase. Interestingly, metabolic capacities of mini-muscled mice resemble those of muscles after endurance training. Overall, our results demonstrate that during selection for voluntary wheel running, distinct adaptive paths that differentially exploit the genetic variation in morphological and physiological traits have been followed.  相似文献   

6.
1. Male and female Wistar-strain rats were studied under either ad libitum or 23-hour food restriction conditions both with and without access to a running wheel. 2. Daily measures were taken of body weight, food consumption and wheel revolutions. 3. It was observed that food restriction was associated with decreased food consumption and body weight but increased wheel revolutions. 4. Irrespective of feeding regime, females exhibited higher running rates than males.  相似文献   

7.
To test the hypothesis that selective breeding for high voluntary wheel running negatively affects maternal performance in house mice, we observed maternal behavior and compared litter size and mass, in replicate lines of selected (N=4) and control (N=4) mice from generations 20 and 21 of an artificial selection experiment. At generation 21, selected-line females ran 2.8-times more revolutions per day than females from random-bred control lines, when tested at approximately 6 weeks of age as part of the normal selection protocol. After giving birth, dams from selected and control lines exhibited similar frequencies of maternal behaviors and also spent similar amounts of time in general locomotor activity at litter ages of both 9 and 16 days. Dams from selected lines also performed equally well as controls in repeated pup-retrieval trials. At first parturition, selected-line dams averaged 2.4 g smaller in body mass as compared with dams from the control lines; however, neither litter size nor litter mass at birth (generation 20) or at weaning (generation 21) differed significantly between selected and control lines. We conclude that, at least under the husbandry conditions employed, maternal behavior and reproductive output at first parturition are genetically independent of wheel-running behavior.  相似文献   

8.
We studied expression of heat shock protein 72 (HSP72) in female mice from four replicate lines that had been selectively bred for high voluntary wheel running (S) and from four random-bred control lines (C). Mice from generation 23 were sampled after 6 days of wheel access, and those from generation 14 were sampled after 8 wk of access to wheels either free to rotate or locked. Mice from S lines ran approximately 2.6 times as many revolutions per day as did those from C lines. Western blotting of tissues from generation 23 mice indicated that S mice had elevated HSP72 expression in triceps surae muscle, but levels in spleen, kidney, heart, and lung were similar in S and C mice. HSP72 expression in triceps surae from generation 14 mice was measured by ELISA and analyzed with a two-way analysis of covariance. The interaction between wheel type and line type (S vs. C) was statistically significant, and subsequent analyses indicated that S mice had significantly elevated HSP72 expression only when housed with free wheels. Mice with the previously described mini-muscle phenotype (Houle-Leroy P, Guderley H, Swallow JG, and Garland T Jr. Am J Physiol Regul Integr Comp Physiol 284: R433-R443, 2003) occurred in both generations and had elevated HSP72 expression in triceps surae. For the generation 23 sample, wheel running as a covariate had a significant negative association with HSP72 expression, and the effect of line type was still statistically significant. Therefore, the increased HSP72 expression of S mice is not a simple proximate effect of their increased wheel running.  相似文献   

9.
The response to uniform selection may occur in alternate ways that result in similar performance. We tested for multiple adaptive solutions during artificial selection for high voluntary wheel running in laboratory mice. At generation 43, the four replicate high runner (HR) lines averaged 2.85-fold more revolutions per day as compared with four non-selected control (C) lines, and females ran 1.11-fold more than males, with no sex-by-linetype interaction. Analysis of variance indicated significant differences among C lines but not among HR for revolutions per day. By contrast, average speed varied significantly among HR lines, but not among C, and showed a sex-by-linetype interaction, with the HR/C ratio being 2.02 for males and 2.45 for females. Time spent running varied among both HR and C lines, and showed a sex-by-linetype interaction, with the HR/C ratio being 1.52 for males but only 1.17 for females. Thus, females (speed) and males (speed, but also time) evolved differently, as did the replicate selected lines. Speed and time showed a trade-off among HR but not among C lines. These results demonstrate that uniform selection on a complex trait can cause consistent responses in the trait under direct selection while promoting divergence in the lower-level components of that trait.  相似文献   

10.
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.  相似文献   

11.
BACKGROUND AND PURPOSE: To evaluate how and when mice run on a running wheel and how ad libitum access to the wheel affect behavior, feed intake, and weight gain. METHODS: Seventeen 2-month-old C57BL/6J mice had access to the wheel, whereas 19 control mice did not. After 3 to 6.5 weeks, behavior was video-recorded over 24 h for each mouse. RESULTS: Experimental mice ran an average 2 km/24 h in 114 min. Highest running activity took place at the onset of darkness. Experimental mice spent 22 min more feeding on the cage floor than did control mice. These times were deducted from those for all other behaviors: 74 min from resting time, 39 min from climbing and feeding on the cage lid, 14 min from locomotion on the cage floor, and 10 min from grooming. In relative figures, deduction from sleeping time was only 9%, whereas climbing time was halved. CONCLUSIONS: Climbing on the cage lid has a similar circadian rhythm as does wheel running and high-energy expenditure. Because experimental mice climbed less, their weight gain and feed intake were similar to those of control mice. Thus, wheel running can substitute for other forms of energy-consuming behaviors and vice versa.  相似文献   

12.
As reported previously, artificial selection of house mice caused a 2.7-fold increase in voluntary wheel running of four replicate selected lines compared with four random-bred control lines. Two of the selected lines developed a high incidence of a small-muscle phenotype ("mini muscles") in the plantar flexor group of the hindlimb, which apparently results from a simple Mendelian recessive allele. At generations 36-38, we measured wheel running and key contractile characteristics of soleus and medial gastrocnemius muscles from normal and mini muscles in mice from these selected lines. Mice with mini muscles ran faster and a greater distance per day than normal individuals but not longer. As expected, in mini-muscle mice the medial and lateral gastrocnemius muscles were approximately 54 and 45% the mass of normal muscles, respectively, but the plantaris muscles were not different in mass and soleus muscles were actually 30% larger. In spite of the increased mass, contractile characteristics of the soleus were unchanged in any notable way between mini and normal mice. However, medial gastrocnemius muscles in mini mice were changed markedly toward a slower phenotype, having slower twitches; demonstrated a more curved force-velocity relationship; produced about half the mass-specific isotonic power, 20-50% of the mass-specific cyclic work and power (only 10-25% the absolute power if the loss in mass is considered); and fatigued at about half the rate of normal muscles. These changes would promote increased, aerobically supported running activity but may compromise activities that require high power, such as sprinting.  相似文献   

13.
Effects of genetic selection for high wheel-running activity (17th generation) and access to running wheels on skeletal muscle glucose uptake were studied in mice with the following treatments for 8 wk: 1) access to unlocked wheels; 2) same as 1, but wheels locked 48 h before glucose uptake measurement; or 3) wheels always locked. Selected mice ran more than random-bred (nonselected) mice (8-wk mean +/- SE = 8,243 +/- 711 vs. 3,719 +/- 233 revolutions/day). Body weight was 5-13% lower for selected vs. nonselected groups. Fat pad/body weight was ~40% lower for selected vs. nonselected and unlocked vs. locked groups. Insulin-stimulated glucose uptake and fat pad/body weight were inversely correlated for isolated soleus (r = -0.333; P < 0.005) but not extensor digitorum longus (EDL) or epitrochlearis muscles. Insulin-stimulated glucose uptake was higher in EDL (P < 0.02) for selected vs. nonselected mice. Glucose uptake did not differ by wheel group, and amount of running did not correlate with glucose uptake for any muscle. Wheel running by mice did not enhance subsequent glucose uptake by isolated muscles.  相似文献   

14.
An outstanding unresolved issue in chronobiology is how the level of locomotor activity influences length of the free-running, endogenous circadian period (tau). To address this issue, the authors studied a novel model, 4 replicate lines of laboratory house mice (Mus domesticus) that had been selectively bred for high wheel-running activity (S) and their 4 unselected control (C) lines. Previous work indicates that S mice run approximately twice as many revolutions/day and exhibit an altered dopaminergic function as compared with C mice. The authors report that S mice have a tau shorter by about 0.5 h as compared with C mice. The difference in tau was significant both under constant light (control lines: tau = 25.5 h; selected: tau = 24.9 h) and under constant dark (control lines: 23.7 h; selected: 23.4 h). Moreover, the difference remained statistically significant even when the effects of running speed and time spent running were controlled in ANCOVA. Thus, something more fundamental than just intensity or duration of wheel-running activity per se must underlie the difference in tau between the S and C lines. However, despite significant difference in total wheel-running activity between females and males, tau did not differ between the sexes. Similarly, among individuals within lines, tau was not correlated with wheel-running activity measured as total revolutions per day. Instead, tau tended to decrease with average running speed but increase with time spent running. Finally, within individuals, an increase in time spent running resulted in decreased tau in the next few days, but changes in running speed had no statistically significant effect. The distinctions between effects of duration versus intensity of an activity, as well as between the among- versus within-individual correlations, are critical to understanding the relation between locomotor activity and pace of the circadian clock.  相似文献   

15.
The evolutionary importance of postnatal ontogenies has long been recognized, but most studies of ontogenetic trajectories have focused exclusively on morphological traits. For animals, this represents a major omission because behavioral traits and their ontogenies often have relatively direct relationships to fitness. Here four replicate lines of house mice artificially selected for high early-age wheel running and their four replicate control lines were used to evaluate the effects of early-age directional selection, genetic drift, and activity environment (presence or absence of a running wheel) on variation in the ontogenies of three traits known to be genetically correlated: voluntary wheel running, body mass, and food consumption. Early-age selection significantly changed both the shape and position of the wheel-running and food-consumption ontogenies while influencing the position, but not the shape, of the body mass ontogeny. Genetic drift (as indicated by variation among replicate lines) produced significant changes in both the position and shape of all three ontogenies; however, its effect differed between the selection and control groups. For wheel running and food consumption, genetic drift only influenced the control ontogenies, whereas for body mass, genetic drift had a significant effect in both selection groups. Both body-mass and food-consumption ontogenies were significantly altered by activity environment, with the environment causing significant changes in the shape and position of both ontogenies. Overall the results demonstrate strong effects of early-age selection, genetic drift, and environmental variation on the evolution and expression of behavioral and morphological ontogenies, with selection changing only the position of the morphological ontogeny but both the position and shape of the behavioral ontogenies.  相似文献   

16.
Selective breeding produced four replicate lines of high-runner (HR) mice that run on wheels for approximately 2.7 times more revolutions per day than four unselected control lines. Previous studies found that HR mice of both sexes have lower body fat (isotope dilution at 15 wk of age) and that males (females not studied) have smaller retroperitoneal fat pads (17 wk). HR mice also exhibit elevated plasma corticosterone and insulin-stimulated glucose uptake by some hindlimb muscles but apparently do not differ in circulating insulin or glucose levels (males at 18 wk). Given their lower body fat and higher activity levels, we hypothesized that HR mice would have lower circulating leptin levels than controls. Female mice were given wheel access for 6 d at 7 wk of age, as part of the routine wheel testing for the selective breeding protocol, and then were killed after one additional week without wheels to reduce possible acute effects of activity on leptin. As hypothesized, serum leptin levels were significantly lower in HR mice. ANCOVA indicated that leptin was strongly positively correlated with both total body fat (measured by ether extraction) and body mass change from weaning, but HR mice still had significantly lower adjusted leptin levels (ANCOVA). Within HR lines but not within control lines, individual variation in leptin levels was negatively correlated with amount or speed of wheel running measured a week before being killed. Growth from weaning to euthanasia and body dry mass were lower in HR mice than in controls, but absolute dry masses of the ventricles, liver, gut, and uterus plus ovaries did not significantly differ, nor did percentage of the total dry mass as fat. HR mice offer a novel model for studying the causes and consequences of physiologically relevant variations in serum leptin.  相似文献   

17.
Physical cage enrichment—exercise devices for rodents in the laboratory—often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.  相似文献   

18.
Physical cage enrichment—exercise devices for rodents in the laboratory—often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.  相似文献   

19.
Little is known about how genetic variation affects the capacity for exercise to change body composition. We examined the extent to which voluntary exercise alters body composition in several lines of selectively bred mice compared to controls. Lines studied included high runner (HR) (selected for high wheel running), M16 (selected for rapid weight gain), Institute of Cancer Research (ICR) (randomly bred as control for M16), M16i (an inbred line derived from M16), HE (selected for high percentage of body fat while holding body weight constant), LF (selected for low percentage of body fat), C57BL/6J (common inbred line), and the F1 between HR and C57BL/6J. Body weight and body fat were recorded before and after 6 days of free access to running wheels in males and females that were individually caged. Total food intake was measured during this 6‐day period. All pre‐ and postexercise measures showed significant strain effects. While HR mice predictably exercised at higher levels, all other selection lines had decreased levels of wheel running relative to ICR. The HR × B6 F1 ran at similar levels to HR demonstrating complete dominance for voluntary exercise. Also, all strains lost body fat after exercise, but the relationships between exercise and changes in percent body were not uniform across genotypes. These results indicate that there is significant genetic variation for voluntary exercise and its effects on body composition. It is important to carefully consider genetic background and/or selection history when using mice to model effects of exercise on body composition, and perhaps, other complex traits as well.  相似文献   

20.
Induction of voluntary prolonged running by rats   总被引:1,自引:0,他引:1  
The rat is widely used in studies of the metabolic and physiological effects of physical exercise. The most commonly used form of exercise is running on treadmills or mechanically driven running wheels. Rats will not voluntarily run significant distances, under normal circumstances. If rats are exposed to running wheels with food freely available, only very limited activity normally occurs. When rats with access to a running wheel are restricted to a fixed amount of food, presented once per day, consistent running occurs. The running is spontaneous and very sensitive to the amount of food provided. Six 6-wk-old rats of 197 g mean body wt were induced to run for 139 days. The distance run increased rapidly over a 20-day initial period on a food supply of 15 g/day (vs. 19.5 g/day consumption by sedentary controls). From day 20 to day 139 the mean distance run was described by the regression equation distance (m/day) = 10,410 - 37.9 X days. Food provided was varied according to distance run, ranging from 15 to 18 g/day, and was normally 17.5 g/day. Thus a food deprivation of 10% of normal consumption will result in mean distances run of approximately 8,000 m/day. The use of pair-fed control animals without access to a wheel allows the conduct of experiments to test the effects of chronic long-distance running. The running is spontaneous; thus the technique avoids the complications accompanying techniques that force running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号