首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.

Background  

Acute exposure of ethanol (alcohol) inhibits NMDA receptor function. Our previous study showed that acute ethanol inhibited the pressor responses induced by NMDA applied intrathecally; however, prolonged ethanol exposure may increase the levels of phosphorylated NMDA receptor subunits leading to changes in ethanol inhibitory potency on NMDA-induced responses. The present study was carried out to examine whether acute ethanol exposure influences the effects of ketamine, a noncompetitive NMDA receptor antagonist, on spinal NMDA-induced pressor responses.  相似文献   

2.
Neocortex and hippocampus play important role in motor activity, neuronal plasticity and learning and memory mechanisms. Electroencephalographic (EEG) activity of neocortex and hippocampus of rat following NMDA-receptor agonist, N-methyl-D-aspartate (NMDA), 0.25-2 nmol in 10 microliters, ICV and noncompetitive NMDA-receptor antagonists, MK 801 (0.025-0.1 mg/kg, ip) and ketamine (10-50 mg/kg, ip) at OH, 1/2H, 4H, 8H and 24H was recorded. The electrodes were implanted stereotaxically in hippocampus and neocortex respectively. NMDA (0.25 and 1 nmol) showed longer lasting decrease in amplitude in hippocampus and in frequency in cortical neurons while 2 nmol produced epileptogenic neurotoxicity. Opposite effect i.e. increase in amplitude in both, hippocampus and neocortex was observed with MK 801 and ketamine and these agents also showed longer lasting influence. Administration of MK 801 (0.05 mg/kg) and ketamine (50 mg/kg) prior to NMDA 2 nmol protected 40% animals from NMDA-induced neurotoxicity and blockade of NMDA-induced long term influence. The EEG effect of NMDA agonist and NMDA-induced neurotoxicity at higher dose and its modification by NMDA-antagonist, MK 801 and ketamine suggest that beside NMDA agonists (NMDA), its antagonists may, also affect long lasting changes in hippocampus and cortex. These antagonists reverse NMDA-mediated long term influence in these brain areas.  相似文献   

3.
J A Purifoy  R W Holz 《Life sciences》1984,35(18):1851-1857
The ability of ketamine, phencyclidine and analogues to alter catecholamine secretion from cultured bovine adrenal chromaffin cells was investigated. Both ketamine and phencyclidine specifically inhibited nicotinic agonist-induced secretion at concentrations which did not alter secretion induced by elevated K+ depolarization. The inhibition of nicotinic agonist-induced secretion was not overcome by increasing concentrations of nicotinic agonist. The effects of stereoisomer pairs of phencyclidine-like drugs - dexoxadrol, levoxadrol and (+)PCMP, (-)PCMP - did not reveal stereospecificity for the inhibition, in contrast to the stereospecific behavioral effects of the drugs. The local anesthetic lidocaine (0.3 mM) also noncompetitively inhibited nicotinic agonist-induced secretion without inhibiting elevated K+-induced secretion. The data indicate that ketamine and phencyclidine at clinically relevant concentrations specifically inhibit the adrenal chromaffin cell nicotinic receptor at a site similar to or identical with the site of action of local anesthetic. Although the nicotinic receptor inhibition is probably not related to the anesthetic and behavioral effects of ketamine and phencyclidine, it is likely that the centrally mediated increase in sympathetic nervous system activity which is characteristic of these drugs is moderated by the peripheral blocking effects on catecholamine secretion from the adrenal medulla.  相似文献   

4.
These studies were designed to compare the effects of nitric oxide (NO) generating compounds with those of several iron containing, compounds which do not generate NO on glutamate receptor function. Stimulation of primary cultures of cerebellar granule cells with N-methyl-D-aspartate (NMDA) or kainate results in the elevation of intracellular calcium ([Ca2+]i) and cGMP and the release of glutamate. The iron containing compounds, sodium nitroprusside (SNP), potassium ferrocyanide (K4Fe(CN)6) and potassium ferricyanide (K3Fe(CN)6) decrease the NMDA-induced release of glutamate. SNP is the only compound of the above 3 agents which generates NO. A non-iron, NO generating compound, S-nitroso-N-acetylpenicillamin (SNAP), has no effect on the NMDA-induced glutamate release. Potassium ferrocyanide (Fe II), but not potassium ferricyanide (Fe III), blocks NMDA-induced cGMP elevations after 3 min exposure times. This contrasts with the NO generating compounds (both SNP and SNAP) which elevate cGMP levels. Furthermore, both potassium ferrocyanide (Fe II) and SNP (Fe II) suppress the elevation of [Ca2+]i induced by NMDA but neither potassium ferricyanide (Fe III) nor SNAP are effective in this regard. These effects are also independent of cyanide as another Fe II compound, ferrous sulfate (FeSO4) is also able to suppress NMDA-induced elevations of [Ca2+]i SNP was unable to suppress kainate receptor functions. Collectively, these results indicate that Fe II, independently of NO, has effects on NMDA receptor function.  相似文献   

5.
At concentrations greater than or equal to 100 microM, phencyclidine (PCP), N-(1-(2-thienyl)-cyclohexyl)piperidine (TCP), and MK-801 induced [3H]dopamine release from dissociated cell cultures of rat mesencephalon. This release was Ca2+ independent and tetrodotoxin insensitive. Tetrodotoxin (2 microM) itself had no effect on spontaneous release of [3H]dopamine. [3H]Dopamine release was induced by 1,3-di(2-tolyl)guanidine, a sigma ligand, and by 4-aminopyridine (1-3 mM), a K+ channel blocker. No stereoselectivity was observed for [3H]dopamine release evoked by the dioxadrol enantiomers, dexoxadrol, and levoxadrol, or by enantiomers of N-allylnormetazocine (SKF 10,047). The selective dopamine uptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909) did not affect spontaneous or TCP-evoked [3H]dopamine release. Together, these data suggest that the dopamine-releasing effects of PCP-like compounds on the mesencephalic cells were not mediated by actions at the PCP receptor or sigma binding site, Ca2+, or Na+ channels, or at the high affinity dopamine uptake site. It remains conceivable that blocking actions of PCP-like compounds at voltage-regulated K+ channels may at least partly explain the response. These results are discussed in comparison with findings in intact brain.  相似文献   

6.
The ionic mechanisms underlying the action of excitatory amino acids were investigated in the rat motor cortex. Ion-selective microelectrodes were attached to micropipettes such that their tips were very close and local changes in extracellular concentration of sodium, calcium, and potassium ions elicited through ionophoretic applications of glutamate (Glu) and of its agonists N-methyl-D-aspartate (NMDA), quisqualate (Quis), and kainate (Ka) were measured. These agents produced moderate increases in [K+]o (up to 13 mM) but, in contrast, substantial tetrodotoxin-insensitive decreases in [Na+]o (maximally of 60 mM). NMDA-induced sodium responses could be blocked by manganese, while the Quis- and Ka-induced responses were not. Quis and Ka produced increases in [Ca2+]o or biphasic responses while NMDA, even with small doses, induced each time drastic decreases in [Ca2+]o (maximally of 1.15 mM), which could be attenuated or blocked by manganese but not by organic calcium channel blockers. NMDA responses could be abolished by reduced doses of 2-amino-phosphonovalerate. The largest Glu- and NMDA-induced calcium responses were observed in the superficial cortical layers, but such maxima disappeared after selective degeneration of pyramidal tract neurons. All amino acids produced sizeable reductions in the extracellular space volume. The following can be concluded. (i) All the excitatory amino acids tested induce an increased permeability to sodium and potassium ions. (ii) In addition, the NMDA-operated channels have specifically a large permeability for calcium, although calcium ions contribute only by less than 10% to the NMDA-induced inward currents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
New N-heteroarylcarbonylalanines of the D-series were stereoselectively prepared from enoates derived from D-mannitol. These compounds were active in binding and functional assays of the NMDA sub-type of glutamate receptors. A pyridine derivative inhibited MK801 binding, protected neurons from excitotoxic damage and blocked NMDA-induced currents in neurons. A thiophene derivative positively modulated the NMDA receptor, possibly through the allosteric glycine site.  相似文献   

8.
The effect of amitriptyline on kainate- and N-methyl-D-aspartate (NMDA)-induced toxicity and release of amino acids from cerebellar granule neurons was studied. The ED50 for amitriptyline, imipramine, and nortriptyline protection against NMDA-induced toxicity was 6.9, 6.5, and 1.3 microM, respectively. None of these compounds protected against kainate-induced toxicity. Even though amitriptyline was protective against NMDA-induced toxicity, it had no effect on the NMDA-induced increase in extracellular levels of glutamate or aspartate from these cells, indicating a dissociation between NMDA receptor activation (as indicated by glutamate content elevations) and NMDA-induced toxicity. However, kainate and quisqualate treatment resulted in elevations of glutamate and taurine levels that were further augmented in the presence of 25 microM amitriptyline. These findings confirm the reports of others that tricyclic antidepressants have neuroprotective effects related to the NMDA receptor and expand on these reports by showing that even though there is protection against toxicity, the NMDA receptor is nevertheless activated, suggesting an involvement of these compounds at sites removed from the receptor. Furthermore, this is the first report showing an interaction of tricyclic antidepressants with the function of non-NMDA receptors.  相似文献   

9.
The phencyclidine (PCP) receptor acylator, metaphit, has been reported to act as a PCP antagonist. Recent electrophysiological and behavioral assessments of metaphit action have revealed, however, that this compound can also act as a PCP-like agonist. The present study examined the effects of metaphit on the inhibition of N-methyl-D-aspartate (NMDA)-induced 3H-acetylcholine (ACh) release, 3H-TCP binding and synaptosomal 3H-dopamine (DA) uptake in the rat striatum. Preincubation of striatal slices for 10 min in the presence of metaphit, followed by a prolonged washout, produced a concentration-dependent inhibition of the ACh release evoked by 300 microM NMDA. At high concentrations, preincubation with PCP also resulted in inhibition of this measure. However, this could be reduced by extending the washout period, a procedure which had no effect on the inhibition produced by metaphit. At 10 microM, metaphit resulted in a 53% reduction in NMDA-evoked ACh release while PCP had no effect under identical conditions. Preincubation of slices in 10 microM PCP and metaphit reduced the metaphit inhibition by 62%. The effects of PCP and metaphit, alone or in combination, on NMDA-induced ACh release were paralleled by a loss of 3H-TCP binding sites in striatal tissue incubated under identical conditions suggesting that metaphit exerts long-lasting agonist-like actions on PCP receptors coupled to NMDA receptors. Although these results do not explain the ability of metaphit to antagonize PCP effects in other assays, we did observe that preincubation of striatal synaptosomes with metaphit also resulted in an irreversible inhibition of 3H-DA uptake. These data are discussed in relation to the interaction of metaphit with PCP receptors in various systems.  相似文献   

10.
Our laboratory has previously shown that the synthetic neuroactive steroid 3alpha-hydroxy-5beta-pregnan-20-one hemisuccinate (3alpha5betaHS) is a negative modulator of NMDA receptors in vitro. Similarly, 3alpha5betaHS exhibits rapid sedative, analgesic, anticonvulsive, and neuroprotective effects in vivo. Here we report a study designed to investigate whether a negatively charged neuroactive steroid, 3alpha5betaHS, modulates the action of NMDA receptors in vivo. Our results indicate that peripherally administered 3alpha5betaHS enters the CNS and inhibits NMDA-mediated motor activity and dopamine release in the rat striatum. The increase in motor activity induced by intrastriatal microinjection of NMDA was blocked by the systemic administration of 3alpha5betaHS and the NMDA-induced increase in extracellular dopamine in the striatum was also attenuated by both systemically administered and intrastriatally administered (by in vivo microdialysis) 3alpha5betaHS. These data indicate that 3alpha5betaHS acts through striatal NMDA receptors in vivo. When taken together, these results suggest that neuroactive steroids may prove to be effective in the treatment of neurological and psychiatric disorders involving over-stimulation of NMDA receptors in the mesotelencephalic dopamine system.  相似文献   

11.
Possible mechanism of anticonvulsant effect of ketamine in mice   总被引:5,自引:0,他引:5  
The study was designed to investigate the effect of ketamine on convulsive behaviour using maximal electroshock (MES) test. An attempt was also made to study the possible receptor mechanisms involved. MES seizures were induced in mice via transauricular electrodes (60 mA, 0.2sec). Seizure severity was assessed by the duration of tonic hindlimb extensor phase and mortality due to convulsions. Intraperitoneal administration of ketamine produced a dose-dependent (5-50 mg/kg) protection against hindlimb extensor phase. The anticonvulsant effect of ketamine was antagonized neither by naloxone (low as well as high doses) nor sulpiride, but was attenuated by haloperidol, a dopamine (D2)/sigma receptor antagonist. Co-administration of gamma-aminobutyric acid (GABA)-ergic drugs (GABA, muscimol, diazepam and baclofen) and N-methyl-D-aspartate (NMDA) receptor antagonist, dizocilpine (MK801) with ketamine facilitated the anticonvulsant action of the latter drug. In contrast, flumazenil, a benzodiazepine (BZD)-GABAA receptor antagonist, reversed the facilitatory effect of diazepam on the anti-MES effect of ketamine. Similarly, delta-aminovaleric acid (DAVA), antagonized the facilitatory effect of baclofen on anti-MES action of ketamine. These BZD-GABAergic antagonists, flumazenil or DAVA per se also attenuated the anti-MES effect of ketamine given alone. The results suggest that besides its known antagonistic effect on NMDA channel, other neurotransmitter systems i.e. sigma, GABAA-BZD-chloride channel complex and GABAB receptors may also be involved in the anti-MES action of ketamine.  相似文献   

12.
Nitric oxide-induced blockade of NMDA receptors.   总被引:20,自引:0,他引:20  
We studied the effects of nitric oxide (NO)-producing agents on N-methyl-D-aspartate (NMDA) receptor activation in cultured neurons. 3-Morpholino-sydnonimine (SIN-1) blocked both NMDA-induced currents and the associated increase in intracellular Ca2+. The actions of SIN-1 were reversible and suppressed by hemoglobin. A degraded SIN-1 solution that did not release NO was unable to block NMDA receptors. This showed that the SIN-1 effects were due to NO and not to another breakdown product. Similar results were obtained with 1-nitrosopyrrolidine (an NO-containing drug) and with NO released from NaNO2. Pretreatment with hemoglobin potentiated NMDA-induced effects, demonstrating that endogenous NO modulates NMDA receptors. Since NMDA receptor activation induces NO synthesis, these results suggest a feedback inhibition of NMDA receptors by NO under physiological condition.  相似文献   

13.
Sun X  Chan LN  Gong X  Sucher NJ 《Neuro-Signals》2003,12(1):31-38
Traditional Chinese medicine (TCM) has a long history in stroke therapy and its therapeutic efficacy has been confirmed by clinical studies. The molecular basis of the neuroprotective effects is unknown. We wondered whether or not the neuroprotective effect of TCMs might be due to their N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist properties. We used the patch-clamp technique to screen 22 TCM stroke drugs for NMDAR antagonist activity in cultured cortical neurons. The drugs were also screened for their ability to abate NMDA-induced neurotoxicity. Aqueous extracts of Scutellaria baicalensis, Stephania tetrandra, and Salvia miltiorrhiza blocked currents induced by NMDA (200 microM, 10 microM glycine, 0 Mg2+) at a holding potential of -80 mV by 83.45+/-4.34, 38.65+/-7.50, and 52.97+/-1.78%, respectively. The block of the NMDA-evoked currents was voltage-dependent and showed a negative slope conductance reminiscent of Mg2+. Atomic absorption spectrophotometry revealed the presence of 12.5, 2, and 8.7 mM Mg2+ in the extracts of S. baicalensis,S. tetrandra, and S. miltiorrhiza, respectively. None of these extracts blocked NMDA-induced neuronal death. The Uncaria rhynchophylla extract blocked NMDA-evoked currents by 54.98+/-8.61% even at +60 mV and reduced NMDA-induced neuronal death by 59.13+/-3.52%. NMDAR antagonist activity may underlie the neuroprotective effects of this TCM. Some TCM drugs may exert therapeutic effects due to their Mg2+ content.  相似文献   

14.
We proposed that acute ammonia toxicity is mediated by activation of NMDA receptors. To confirm this hypothesis we have tested whether different NMDA receptor antagonists, acting on different sites of NMDA receptors, prevent death of mice induced by injection of 14 mmol/Kg of ammonium acetate, a dose that induces death of 95% of mice. MK-801, phencyclidine and ketamine, which block the ion channel of NMDA receptors, prevent death of at least 75% of mice. CPP, AP-5, CGS 19755, and CGP 40116, competitive antagonists acting on the binding site for NMDA, also prevent death of at least 75% of mice. Butanol, ethanol and methanol which block NMDA receptors, also prevent death of mice. There is an excellent correlation between the EC50 for preventing ammonia-induced death and the IC50 for inhibiting NMDA-induced currents. Acute ammonia toxicity is not prevented by antagonists of kainate/AMPA receptors, of muscarinic or nicotinic acetylcholine receptors or of GABA receptors. Inhibitors of nitric oxide synthase afford partial protection against ammonia toxicity while inhibitors of calcineurin, of glutamine synthetase or antioxidants did not prevent ammonia-induced death of mice. These results strongly support the idea that acute ammonia toxicity is mediated by activation of NMDA receptors.  相似文献   

15.
The antinociceptive effects of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were investigated on animal paw licking responses and thermal hyperalgesia induced by glutamate receptor agonists including glutamate, N-methyl-D-aspartate (NMDA), and metabotropic glutamate 5 receptor (mGluR5) activator (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as inflammatory mediators such as substance P and prostaglandin E2 (PGE2) in mice. The actions of honokiol and magnolol on glutamate-induced c-Fos expression in the spinal cord dorsal horn were also examined. Our data showed that honokiol and magnolol blocked glutamate-, substance P- and PGE2-induced inflammatory pain with similar potency and efficacy. Consistently, honokiol and magnolol significantly decreased glutamate-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol was more selective than magnolol for inhibition of NMDA-induced licking behavioral and thermal hyperalgesia. In contrast, magnolol was more potent to block CHPG-mediated thermal hyperalgesia. These results demonstrate that honokiol and magnolol effectively decreased the inflammatory pain. Furthermore, their different potency on inhibition of nociception provoked by NMDA receptor and mGluR5 activation should be considered.  相似文献   

16.
S R Zukin 《Life sciences》1982,31(12-13):1307-1310
Paired stereoisomers of compounds active at the proposed mu, kappa and sigma classes of opiate receptors display differing stereoselectivity patterns at the receptor subtypes. The (-) isomers of cyclazocine and SKF-10047 are far more potent than the (+) isomers as displacers of [3H]dihydromorphine from receptors. However, the (-) isomers are only moderately more potent than the (+) isomers at displacing [3H]ethylketocyclazocine from kappa receptors in an assay controlled for radioligand binding to mu receptors, and the (+) and (-) isomers are similar in potency for displacement of [3H]phencyclidine (PCP) from sigma receptors. At the sigma/PCP receptor, (+) ketamine proved four times as potent as (-) ketamine, while the dioxalan derivative dexoxadrol is far more potent than its nearly inactive enantiomer levoxadrol. The results for the sigma/PCP receptor are in agreement with those of behavioral studies. Stereospecificity patterns may provide support for the concept of the opiate receptor subclasses as biochemically distinct entities.  相似文献   

17.
ES-242-1 approximately 5 are novel microbial bioxanthracenes which do not contain nitrogen. The ES-242s inhibited the binding of [3H]TCP and [3H]CGS19755 to the N-methyl-D-aspartate (NMDA) receptor complex. They had no effect on the binding of the specific ligands for the non-NMDA receptor. The biochemical and pharmacological properties of ES-242-1 were fully examined since it is the most potent of the five compounds. ES-242-1 is highly specific for the NMDA receptor; it has no effect on other receptors. Kinetic analyses indicated that ES-242-1 inhibited the binding of [3H]TCP and [3H]CGS19755 in a competitive manner, respectively, suggesting that ES-242-1 interacts with both the transmitter recognition site and the channel domain. ES-242-1 selectively inhibited NMDA-induced Ca2+ influx in primary cultures of mouse hippocampal neurons. ES-242-1 also specifically blocked the increase in cyclic GMP accumulation induced by NMDA or L-glutamate in rat cerebellar slices. In a concentration range of 0.1-1.0 microM, ES-242-1 was as potent as MK-801 in preventing glutamate-induced neurotoxicity in primary cultures of mouse hippocampal neurons. These results show that ES-242-1 is a potent and specific antagonist for the NMDA receptor. The antagonistic properties of the ES-242s appear to be due to a novel mechanism of action at the NMDA receptor.  相似文献   

18.
The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.  相似文献   

19.
Although hepatocyte growth factor (HGF) and its receptor are expressed in various regions of the brain, their effects and mechanism of action under pathological conditions remain to be determined. Over-activation of the N-methyl-d-aspartate (NMDA) receptor, an ionotropic glutamate receptor, has been implicated in a variety of neurological and neurodegenerative disorders. We investigated the effects of HGF on the NMDA-induced cell death in cultured hippocampal neurons and sought to explore their mechanisms. NMDA-induced cell death and increase in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were prevented by HGF treatment. Although neither the total amounts nor the mitochondrial localization of Bax, Bcl-2 and Bcl-xL were affected, caspase 3 activity was increased after NMDA exposure. Treatment with HGF partially prevented this NMDA-induced activation of caspase 3. Although the amount of apoptosis-inducing factor (AIF) was not altered, translocation of AIF into the nucleus was detected after NMDA exposure. This NMDA-induced AIF translocation was reduced by treatment with HGF. In addition, increased poly(ADP-ribose) polymer formation after NMDA exposure was attenuated by treatment with HGF. These results suggest that the protective effects of HGF against NMDA-induced neurotoxicity are mediated via the partial prevention of caspase 3 activity and the inhibition of AIF translocation to the nucleus.  相似文献   

20.
Liu J  Ji XQ  Zhu XZ 《Life sciences》2006,78(16):1839-1844
Ketamine is a racemic mixture containing equal parts of (+)-ketamine and (-)-ketamine. The ketamine enantiomorphs are different in anesthesia and psychic emergence reactions after anesthesia. Therefore, (+)-ketamine was compared with racemic ketamine in a number of randomized studies in volunteers and patients. However, their relations remain controversial. In the present studies, the psychic emergence reactions after injection of (+/-)-ketamine and (+)-ketamine were compared in mice. At equimolar doses, the (+)-isomers elicited episodes of hypnosis nearly 1.4-fold more potent than those of the racemic ketamine. After the administration of equihypnotic doses of (+)-ketamine and (+/-)-ketamine, the posthypnotic stimulation of locomotor activity, stereotype behavior and 5-HT-induced head-twitch response by the (+)-enantiomorph was significantly less intense than that of racemic ketamine. In receptor binding test, (+)-ketamine showed a higher affinity for NMDA receptor than that of (+/-)-ketamine, while (+)-ketamine and (+/-)-ketamine showed no affinity for dopamine D2 and serotonin 5-HT2 receptor. These results suggest that the (+)-ketamine has fewer posthypnotic side effects than (+/-)-ketamine when (+)-ketamine and (+/-)-ketamine were administered at equihypnotic dosages and that dopamine D2 and serotonin 5-HT2 receptor were not involved in the effects of (+)-ketamine and (+/-)-ketamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号