首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao CJ  Xu CG  Wang W  Chai BF  Liang AH 《Biotechnology letters》2005,27(23-24):1929-1934
An insect excitatory toxin from Buthus martensii Karsch (BmK IT) was cloned into the expression vector, pTWIN1, and expressed into Escherichia coli BL21 (DE3) host cells. The soluble fusion expression of CBD-intein-BmK IT was obtained. The recombinant BmK IT was purified by two anion-exchange chromatography columns and one gel chromatography column. Bioassays were carried out to verify the toxicity of this recombinant toxin. At the end of a 96 h experimental period, 83% of cotton bollworm larvae were killed with an LT(50) value of 58-62 h. Furthermore, the average weight of larvae fed on BmK IT-containing media was approx 4% of that of the control groups. The results indicate that the expressed and purified recombinant BmK IT has biological activity.  相似文献   

2.
We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus, Photorhabdus luminescens W14 P. luminescens TTO1, and Yersinia pestis CO92. The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity.  相似文献   

3.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS-PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine-SDS-PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the alpha-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD(50) similar to that of the native toxin.  相似文献   

4.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

5.
A primary cell culture was developed for efferent dorsal unpaired median (DUM) neurons of the locust. The isolated somata were able to generate Tetrodotoxin (TTX)-sensitive action potentials in vitro. The alpha-like scorpion toxin BmK M1, from the Asian scorpion Buthus martensi Karsch, prolonged the duration of the action potential up to 50 times. To investigate the mechanism of action of BmK M1, the TTX-sensitive voltage gated Na(+) currents were studied in detail using the whole cell patch clamp technique. BmK M1 slowed down and partially inhibited the inactivation of the TTX-sensitive Na(+) current in a dose dependent manner (EC50=326.8+/-34.5 nM). Voltage and time dependence of the Na(+) current were described in terms of the Hodgkin-Huxley model and compared in control conditions and in the presence of 500 nM BmK M1. The BmK M1 shifted steady state inactivation by 10.8 mV to less negative potentials. The steady state activation was shifted by 5.5 mV to more negative potentials, making the activation window larger. Moreover, BmK M1 increased the fast time constant of inactivation, leaving the activation time constant unchanged. In summary, BmK M1 primarily affected the inactivation parameters of the voltage gated Na(+) current in isolated locust DUM neurons.  相似文献   

6.
为获得重组蝎昆虫毒素BmKIT,通过PCR方法在BmKIT基因的3′端融合了编码6个组氨酸残基的核苷酸序列,将其插入原核表达载体pTWIN1的内含肽Ssp DnaB Intein基因下游的多克隆位点(MCS)。将获得的表达质粒转化大肠杆菌BL21(DE3)中,用IPTG诱导融合蛋白表达。用Ni-NTA亲和层析柱从菌体裂解液中纯化了CBD-Intein-BmK IThis6融合蛋白,并在柱上诱导Intein自剪切,成功去除融合子CBD-Intein。通过Superdex75凝胶过滤层析获得了纯度达95%以上的BmK IThis6蛋白,该蛋白不仅具有正确的二级结构而且有生物活性。  相似文献   

7.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS–PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine–SDS–PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the α-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD50 similar to that of the native toxin.  相似文献   

8.
For a long time Asian scorpion Buthus martensi Karsch (BmK) has been used in Chinese traditional medicine to cure many diseases of nervous system. Here we report the purification and characterization of a pharmacologically active neurotoxin from the scorpion BmK. This toxin had little toxicity in mice and insects but was found to have an anti-epilepsy effect in rats, and is thus named as BmK anti-epilepsy peptide (BmK AEP). Its amino-acid sequence was determined by lysylendopeptidase digestion, Edman degradation and mass spectrographic analysis. Based on the determined sequence, the gene coding for this peptide was also cloned and sequenced by the 3' and 5' RACE methods. It encodes a precursor of 85 amino-acid residues including a signal peptide of 21 residues, a mature peptide of 61 residues and three additional residues Gly-Lys-Lys at the C-terminus. The additional Gly sometimes followed by one or two basic residues is prerequisite for the amidation of its C-terminus. C-terminal amidation was also verified by the molecular-mass determination of BmK AEP. This anti-epilepsy peptide toxin shares homology with other depressant insect toxins. The remarkable difference between them was mainly focused at residues 6, 7 and 39; these residues might relate to the unique action of BmK AEP.  相似文献   

9.
BmK AngM1, a scorpion peptide isolated from Buthus martensii Karch was reported to exhibit potential analgesic effect. But the relative low content of this toxin in crude venom limits its further characterization. In this study, we constructed an expression vector and transformed into E.coli. The BmK AngM1 was expressed as a fusion protein in the soluble fraction and was purified by Nickel affinity chromatography. Subsequently, the purified fusion protein was cleaved by enterokinase and was further purified by reverse-phase HPLC. We purified 25 mg recombinant BmK AngM1 (rBmK AngM1) from 1 L bacterial culture. The molecular weight of rBmK AngM1 determined by ESI-MS was 7240.4 Da which was the expected size for correctly processed. Analgesic bioassay studies of rBmK AngM1 exhibited its potential analgesic effect comparable to that of the natural BmK AngM1 peptide.  相似文献   

10.
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.  相似文献   

11.
Scorpion venom contains many small polypeptide toxins, which can modulate Na(+), K(+), Cl(-), and Ca(2+) ion-channel conductance in the cell membrane. A full-length cDNA sequence encoding a novel type of K(+)-channel toxin (named BmTxKS4) was first isolated and identified from a venom gland cDNA library of Buthus martensii Karsch (BmK). The encoded precursor contains 78 amino acid residues including a putative signal peptide of 21 residues, propeptide of 11 residues, and a mature peptide of 43 residues with three disulfide bridges. BmTxKS4 shares the identical organization of disulfide bridges with all the other short-chain K(+)-channel scorpion toxins. By PCR amplification of the genomic region encoding BmTxKS4, it was shown that BmTxKS4 composed of two exons is disrupted by an intron of 87 bp inserted between the first and the second codes of Phe (F) in the encoding signal peptide region, which is completely identical with that of the characterized scorpion K(+)-channel ligands in the size, position, consensus junctions, putative branch point, and A+T content. The GST-BmTxKS4 fusion protein was successfully expressed in BL21 (DE3) and purified with affinity chromatography. About 2.5 mg purified recombinant BmTxKS4 (rBmTxKS4) protein was obtained by treating GST-BmTxKS4 with enterokinase and sephadex chromatography from 1 L bacterial culture. The electrophysiological activity of 1.0 microM rBmTxKS4 was measured and compared by whole cell patch-clamp technique. The results indicated that rBmTxKS4 reversibly inhibited the transient outward K(+) current (I(to)), delayed inward rectifier K(+) current (I(k1)), and prolonged the action potential duration of ventricular myocyte, but it has no effect on the action potential amplitude. Taken together, BmTxKS4 is a novel subfamily member of short-strain K(+)-channel scorpion toxin.  相似文献   

12.
东亚钳蝎毒素基因BmKIT3 编码是由 6 5个氨基酸残基组成的多肽物质。该类毒素为专一性作用于昆虫的抑制型神经毒素 ,它已被广泛用于研究离子通道作用机理[1 ] ;同时 ,它是研究蛋白质结构和功能的极好模型 ,是研究神经药理学的理想工具 ,将具有药理活性和昆虫毒性的基因导入细胞或动植物体内具有十分重要的应用价值。它对昆虫作用的专一性很高 ,对哺乳动物无害或毒性很小 ,可作为一种安全、有效的生物杀虫剂[2 ,3 ] 。我们的研究是对该基因密码子进行优化 ,采用化学合成的方法合成了适于在昆虫中表达的BmKIT3 的两条长的引物 ,通过…  相似文献   

13.
Scorpion alpha-neurotoxins can be classified into distinct subgroups according to their sequence and pharmacological properties. Using toxicity tests, binding studies, and electrophysiological recordings, BmK M1, a toxin from the Asian scorpion Buthus martensi Karsch, was experimentally identified as an alpha-like toxin. Being the first alpha-like toxin available in a recombinant form, BmK M1 was then modified by site-directed mutagenesis for investigation of the molecular basis of its activity. The results suggested a functional site which protrudes from the molecular scaffold as a unique tertiary arrangement, constituted by the five-residue reverse turn 8-12 and the C-terminal segment. The C-terminal basic residues Lys62 and His64 together with Lys8 in the turn, which are critical for the bioactivities, may directly interact with the receptor site on the sodium channel. Residues Asn11 and Arg58, indispensable for the activities, are mainly responsible for stabilizing the distinct conformation of the putative bioactive site. Among others, His10 and His64 seem to be involved in the preference of BmK M1 for phylogenetically distinct target sites. The comparison of BmK M1 with Aah2 (classical alpha-toxin) and Lqh(alpha)IT (alpha-insect toxin) showed that the specific orientation of the C-terminus mediated by the reverse turn might be relevant to the preference of alpha-toxin subgroups for phylogenetically distinct yet closely related receptor sites. The Y5G mutation indicated the "conserved hydrophobic surface" might be structurally important for stabilizing the beta-sheet in the alpha/beta-scaffold. The observations in this work shed light on the nature and roles of the residues possibly involved in the biological activity of a scorpion alpha-like toxin.  相似文献   

14.
The low yield and poor folding efficiency in vivo of soluble and active recombinant cysteine-rich proteins expressed in Escherichia coli are a major challenge for large-scale protein production and purification. Expression vectors containing Buthus martensii Karsch insect toxin (BmK IT) fused to the C terminus of the intein Ssp DnaB were constructed in an attempt to overcome this problem. Following purification and intein self-cleavage, the fusion protein His(6)-intein-IT produced insoluble BmK IT, while intein-IT-His(6) generated soluble and properly folded BmK IT. This result indicated that the positioning of the His(6) tag has a key role in the production of soluble and functional BmK IT.  相似文献   

15.
CssII is a β-scorpion peptide that modifies preferentially sodium currents of the voltage-dependent Na+ channel (Nav) sub-type 1.6. Previously, we have found that the C-terminal amidation of CssII increases its affinity for Nav, which opens at more negative potentials in the presence of CssII. Although C-terminal amidation in vitro conditions is possible, five CssII peptide toxin variants with C-terminal residues modified were heterogously expressed (rN66S, rN66H, rN66R, r[T64R/N66S] and r[T64R/N66R], in which r stands for recombinant, the capital letters to the amino acid residues and the numbers indicate the position of the given residue into the primary sequence of the toxin) and correctly folded. A secondary structure prediction of CssII agrees with the experimental secondary structure obtained by circular dichroism; so all bacterial expressed neurotoxin variants maintained the typical α/β secondary structure motif of most Na+ channel scorpion toxins. The electrophysiological properties of all recombinant variants were examined, and it was found that substitutions of threonine (T) and asparagine (N) at the C-terminal region for arginine (R) (r[T64R/N66R]) increase their affinity for Nav1.6. Although, the molecular interactions involved in this mechanism are still not clearly determined, there is experimental evidence supporting the suspicion that incorporation of basic charged amino acid residues at the C-terminal tail of a group of α-scorpion toxin was favored by natural selection.  相似文献   

16.
BmK-betaIT (previously named as Bm32-VI in the literature), an excitatory scorpion beta-toxin, is purified from the venom of the Chinese scorpion Buthus martensii Karsch. It features a primary sequence typical of the excitatory anti-insect toxins: two contiguous Cys residues (Cys37-Cys38) and a shifted location of the fourth disulfide bridges (Cys38-Cys64), and demonstrates bioactivity characteristic of the excitatory beta-toxins. However, it is noteworthy that BmK-betaIT is not conserved with a glutamate residue at the preceding position of the third Cys residue, and is the first example having a non-glutamate residue at the relevant position in the excitatory scorpion beta-toxin subfamily. The 3D structure of BmK-betaIT is determined with 2D NMR spectroscopy and molecular modeling. The solution structure of BmK-betaIT is closely similar to those of BmK IT-AP and Bj-xtrIT, only distinct from the latter by lack of an alpha(0)-helix. The surface functional patch comparison with those of BmK IT-AP and Bj-xtrIT reveals their striking similarity in the spatial arrangement. These results infer that the functional surface of beta-toxins is composed of two binding regions and a functional site. The main binding site is consisted of hydrophobic residues surrounding the alpha(1)-helix and its preceding loop, which is common to all beta-type scorpion toxins affecting Na(+) channels. The second binding site, which determines the specificity of the toxin, locates at the C-terminus for excitatory insect beta-toxin, while rests at the beta-sheet and its linking loop for anti-mammal toxins. The functional site involved in the voltage sensor-trapping model, which characterizes the function of all beta-toxins, is the negatively charged residue Glu15.  相似文献   

17.
We have purified a new toxin (BmK 17[4]) from Asian scorption (Buthus martensii Karsch) venom that possesses a distinctive structural motif in its N-terminal (positions 8–12) that is similarly found in two other previously described α-like toxins. BmK 17[4] prolongs action potentials (APs) in frog nerve and was purified using gel filtration, ion exchange, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). BmK 17[4] significantly prolonged frog APs but it did not alter APs from an insect ventral nerve cord at similar doses. When applied to voltage-clamped frog muscle single fibers, BmK 17[4] prolonged fast inactivation. Because the polypeptide prolongs APs when both K+ and Ca2+ channels were blocked, BMK 17[4] acts to selectively alter Na+ channel inactivation. The N-terminal sequence of BmK 17[4] was found to be VRDAYIAKPENCVYXC—. The molar mass of BmK 17[4] was determined by LC/MS/MS to be 7097 Daltons. The N-terminal motif (KPENC), which introduces a reverse turn in residues 8–12, does not appear in previously characterized BmK α-toxins and may be characteristic of α-like toxins. Sequence similarity database searches were used to test whether the N-terminal sequences of α-like polypeptide toxins from B. martensii Karsch possess a distinctive structural motif in its 5-residue reverse turn (α-turn) that is conserved. Sequence similarities with putative polypetides encoded by cDNAs obtained from a cDNA library [Zhu, S. Y., Li, W. X., Zenq, X. C., et al. (2000) Nine novel precursors of Buthus martensii scorpiox alpha-toxin homologues. Toxicon 38, 1653–1661] from BmK venom glands showed that an active polypeptide toxin cleaved from the putative propolypeptide toxin BmK M9 is likely identical to BmK 17[4]. Sequence comparisons with toxins and putative toxins from B. martensii Karsch and other species revealed that a group of these toxins possess a common structural motif in their α-turn. A neighbor-joining phylogenetic analysis suggests that there are two phylogenetic sister groups of related BmK polypeptides; one possesses the KPENC motif and the other possesses a modifed version (KPHNC) of it.  相似文献   

18.
A novel short-chain scorpion toxin BmP08 was purified from the venom of the Chinese scorpion Buthus martensi Karsch by a combination of gel-filtration, ion exchange, and reversed-phase chromatography. The primary sequence of BmP08 was determined using the tandem MS/MS technique and Edman degradation, as well as results of NMR sequential assignments. It is composed of 31 amino acid residues including six cysteine residues and shares less than 25% sequence identity with the known alpha-KTx toxins. BmP08 shows no inhibitory activity on all tested voltage-dependent and Ca(2+)-activated potassium channels. The 3D-structure of BmP08 has been determined by 2D-NMR spectroscopy and molecular modeling techniques. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation and features a 3(10)-helix and a shorter beta-sheet. The unique structure is closely related to the distinct primary sequence of the toxin, especially to the novel arrangement of S-S linkages in the molecule, in which two disulfide bridges (C(i)-C(j) and C(i+3)-C(j+3)) link covalently the 3(10)-helix with one strand of the beta-sheet structure. The electrostatic potential surface analysis of the toxin reveals salt bridges and hydrogen bonds between the basic residues and negatively charged residues nearby in BmP08, which may be unfavorable for its binding with the known voltage-dependent and Ca(2+)-activated potassium channels. Thus, finding the target for this toxin should be an interesting task in the future.  相似文献   

19.
A cDNA (1061 bp) Bj glyII was cloned from a mannitol induced library of Brassica juncea. It encoded a protein of 335 amino acids with a molecular weight of 36.52 kDa. The deduced amino acid sequence of the clone showed 92% and 56% identity with Pennisetum and rice glyoxalase II, respectively, and 30% identity was observed with the human glyoxalase II. Search for the identical residues revealed the presence of highly conserved THHHXDH domain which is involved in zinc binding. p-NN and pSORT analysis of this sequence revealed a N-terminal mitochondrial target peptide. The cDNA was cloned in pMAL and a fusion protein with MBP (78 kDa) was expressed in Escherichia coli. The recombinant protein was purified approximately sixfold by affinity purification on amylose column and showed its pH optima at 7.0. The K(m) was determined to be 120 microM using S-d-lactoylglutathione as substrate. The expression of Bj glyII under various abiotic stress conditions showed that it is upregulated by salinity, heavy metal stress, and ABA.  相似文献   

20.
A new peptide was purified from the venom of the Venezuelan scorpion Tityus discrepans, by high-performance liquid chromatography and its amino acid sequence was completed by Edman degradation and mass spectrometry analysis. It contains 38 amino acid residues with a molecular weight of 4177.7 atomic mass units, tightly folded by three disulfide bridges, and has a pyroglutamic acid at the N-terminal region. This peptide, named Discrepin, was shown to block preferentially the IA currents of the voltage-dependent K+ -channel of rat cerebellum granular cells in culture. The K+ -currents are inhibited in an apparently irreversible manner, whose 50% inhibitory effect is reached with a 190 nM toxin concentration. The systematic nomenclature proposed for this toxin is alpha-KTx15.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号