首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by [35S]cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the [35S]-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In this work, we have used Xenopus oocyte maturation as a read-out for examining the ability of the neu tyrosine kinase (p185neu) to participate with the epidermal growth factor (EGF) receptor in a common signal transduction pathway. We find that unlike the case for the EGF receptor, which elicits EGF-dependent maturation of these oocytes as reflected by their germinal vesicle breakdown (GVBD), neither the normal neu tyrosine kinase (p185val664) nor the oncogenic form of neu (p185glu664) are able to effectively trigger this maturation event. However, expression of p185glu664 causes a specific and significant promotion of the progesterone-induced GVBD, reducing the half-time for this maturation even from approximately 9 h to approximately 5 h. Stimulation of the progesterone-induced GVBD did not occur following the expression of a kinase-deficient p185neu protein (in which a lysine residue at position 758 was changed to alanine). Essentially identical results were obtained when the mRNAs coding for fusion proteins comprised of the extracellular domain of the receptor for immunoglobulin E (IgE), and the membrane-spanning and tyrosine kinase domains of normal or oncogenic p185neu (designated IgER/p185val664 and IgER/p185glu664, respectively), were injected into oocytes. Antigen-induced crosslinking of IgER/p185val164 proteins expressed in oocytes caused a reduction in the half-time for the progesterone-stimulated GVBD from approximately 9 h to approximately 7 h. Thus, the aggregation of the membrane-spanning and/or tyrosine kinase domains of p185val664 partially mimics the effects of the oncogenic forms of p185neu. Overall, the results of these studies suggest that the activation of the p185neu tyrosine kinase by a point mutation within its membrane-spanning helix, or an aggregation event, can result in the facilitation of oocyte maturation events that are elicited by other factors (e.g. progesterone). However, the activated p185neu tyrosine kinases are not able to mimic the EGF-stimulated EGF receptor tyrosine kinase in triggering oocyte maturation, which suggests that the EGF receptor and the p185neu tyrosine kinase do not input into identical signal transduction pathways in these cells.  相似文献   

3.
The overexpression of the growth factor receptor p185 neu/c-erbB-2 has been observed in a number of human adenocarcinomas and is mechanistically linked to neoplastic growth. Monoclonal antibodies raised against extracellular domains of the p185 neu/c-erbB-2 receptor oncoprotein have been utilized to inhibit the pathway ofneu-induced tumor development. Our laboratory has demonstrated a direct effect of anti-p185 neu/c-erbB2 antibodies which requires receptor ligation. This induced aggregation causes the downmodulation of cell-surface expression and eventual degradation of p185 neu/c-erbB-2 protein. In cells transformed by theneu oncogene, the result of antibody-induced p185 neu/c-erbB-2 receptor modulation is the reversion of the malignant pheno-type. We are exploiting the direct efficacy of this monoclonal antibody by developing small molecules (peptides and organic mimietics) based on anti-p185 neu/c-erbB-2 antibody structure that can mediate similar receptor binding and biological effects.  相似文献   

4.
Overexpression of the erbB-2/neu gene is frequently detected in human cancers. When overexpressed in NIH 3T3 cells, the normal erbB-2 product, gp185erbB-2, displays potent transforming ability as well as constitutively elevated levels of tyrosine kinase activity in the absence of exogenously added ligand. To investigate the basis for its chronic activation we sought evidence of a ligand for gp185erbB-2 either in serum or produced by NIH 3T3 cells in an autocrine manner. We demonstrate that a putative ligand for gp185erbB-2 is not contained in serum. Chimeric molecules composed of the extracellular domain of gp185erbB-2 and the intracellular portion of the epidermal growth factor receptor (EGFR) did not show any transforming ability or constitutive autophosphorylation when they were expressed in NIH 3T3 cells. However, they were able to transduce a mitogenic signal when triggered by a monoclonal antibody directed against the extracellular domain of erbB-2. These results provide evidence against the idea that an erbB-2 ligand is produced by NIH 3T3 cells. Furthermore, we obtained direct evidence of the constitutive enzymative activity of gp185erbB-2 by demonstrating that the erbB-2 kinase remained active in a chimeric configuration with the extracellular domain of the EGFR, in the absence of any detectable ligand for the EGFR. Thus, under conditions of overexpression, the normal gp185erbB-2 is a constitutively active kinase able to transform NIH 3T3 cells in the absence of ligand.  相似文献   

5.
Exposure of neu-oncogene-transformed NIH 3T3 cells to monoclonal antibodies reactive with the neu gene product, p185, results in the rapid and reversible loss of both cell-surface and total cellular p185. Although not directly cytotoxic, monoclonal anti-p185 antibody treatment causes neu-transformed NIH 3T3 cells to revert to a nontransformed phenotype, as determined by anchorage-independent growth. Isotype matched control antibodies of an unrelated specificity do not affect p185 levels or colony formation in soft agar by neu-transformed NIH 3T3 cells. Soft agar colony formation by NIH 3T3 cells transformed by ras oncogenes is not affected by anti-p185 antibody treatment. Anchorage-independent growth of cells from the ethylnitrosourea-induced rat neuroblastoma line in which neu was originally detected by DNA transfection is also inhibited in the presence of anti-p185 monoclonal antibodies. Collectively, these results suggest that p185 is required to maintain transformation induced by the neu oncogene.  相似文献   

6.
T Wada  X L Qian  M I Greene 《Cell》1990,61(7):1339-1347
We have used cross-linking reagents on cell lines expressing both p185neu and EGFR. The lysates of the cells were precipitated with anti-p185neu or anti-EGFR antibodies. These precipitates included a high molecular weight complex that was identified as an EGFR-p185neu heterodimer. Heterodimerization was found to be induced by exposure to EGR. The EGFR of these cells displayed three affinity states for EGF: low (Kd, approximately 10(-9) M), high (Kd, 10(-9) to 10(-10) M), and very high (Kd, 10(-11) M), as determined by Scatchard analyses. Relatively small levels of EGF had a dramatic biological effect on cells expressing very high affinity EGFR. The very high affinity EGFR disappeared after the cells were treated with anti-p185neu monoclonal antibodies that selectively down-regulated p185neu. EGF and TPA had differential effects on down-modulation of the EGFR in cells that express either one or both species of receptor proteins.  相似文献   

7.
The HER2/neu gene encodes a receptor tyrosine kinase that is highly homologous to the epidermal growth factor receptor. Overexpression of the receptor in mammary and ovarian carcinoma correlates with poor patient prognosis. To determine how the overexpression of a normal receptor leads to the generation of an oncogenic signal, we compared the patterns of tyrosine phosphorylation in tumor-derived human cell lines expressing high levels of p185HER2/neu. In intact SKBR3 cells, basal phosphorylation of p185HER2/neu was not detected. However, pretreatment of cells with the tyrosine phosphatase inhibitor, sodium orthovanadate, led to the detection of phosphotyrosine on phospholipase C-gamma (PLC-gamma), GTPase-activating protein but not on the RAF-1 kinase. Strikingly, PLC-gamma was detected in a complex which contained multiple tyrosine-phosphorylated polypeptides. This complex was detected only in cytoplasmic fractions and had a distinct composition in different p185HER2/neu-overexpressing cell lines. Although GTPase-activating protein has been found previously in association with proteins of 190 and 62 kDa in fibroblasts, in SKBR3 cells it was found associated with multiple additional tyrosine-phosphorylated polypeptides. These experiments show that SKBR3 cells possess high levels of protein tyrosine phosphatase that can act upon p185HER2/neu. Moreover, they reveal, for the first time, the presence of PLC-gamma and GTPase-activating protein in cytosolic complexes containing a variety of other tyrosine-phosphorylated polypeptides. These observations suggest novel possibilities for the specific definition of receptor-generated signals in tumor cells.  相似文献   

8.
p185(her2/neu) belongs to the ErbB receptor tyrosine kinase family, which has been associated with human breast, ovarian, and lung cancers. Targeted therapies employing ectodomain-specific p185(her2/neu) monoclonal antibodies (mAbs) have demonstrated clinical efficacy for breast cancer. Our previous studies have shown that p185(her2/neu) mAbs are able to disable the kinase activity of homomeric and heteromeric kinase complexes and induce the conversion of the malignant to normal phenotype. We previously developed a chimeric antibody chA21 that specifically inhibits the growth of p185(her2/neu)-overexpressing cancer cells in vitro and in vivo. Herein, we report the crystal structure of the single-chain Fv of chA21 in complex with an N-terminal fragment of p185(her2/neu), which reveals that chA21 binds a region opposite to the dimerization interface, indicating that chA21 does not directly disrupt the dimerization. In contrast, the bivalent chA21 leads to internalization and down-regulation of p185(her2/neu). We propose a structure-based model in which chA21 cross-links two p185(her2/neu) molecules on separate homo- or heterodimers to form a large oligomer in the cell membrane. This model reveals a mechanism for mAbs to drive the receptors into the internalization/degradation path from the inactive hypophosphorylated tetramers formed dynamically by active dimers during a "physiologic process."  相似文献   

9.
Monoclonal antibodies specific for the p185HER2/neu growth factor receptor represent a significant advance in receptor-based therapy for p185HER2/neu-expressing human cancers. We have used a structure-based approach to develop a small (1.5 kDa) exocyclic anti-HER2/neu peptide mimic (AHNP) functionally similar to an anti-p185HER2/neu monoclonal antibody, 4D5 (Herceptin). The AHNP mimetic specifically binds to p185HER2/neu with high affinity (KD=300 nM). This results in inhibition of proliferation of p185HER2/neu-overexpressing tumor cells, and inhibition of colony formation in vitro and growth of p185HER2/neu-expressing tumors in athymic mice. In addition, the mimetic sensitizes the tumor cells to apoptosis when used in conjunction with ionizing radiation or chemotherapeutic agents. A comparison of the molar quantities of the Herceptin antibody and the AHNP mimetic required for inhibiting cell growth and anchorage-independent growth showed generally similar activities. The structure-based derivation of the AHNP represents a novel strategy for the design of receptor-specific tumor therapies.  相似文献   

10.
基质金属蛋白酶-2(Matrix Metalloproteinase-2,MMP-2)是基质金属蛋白酶家族的重要成员,能降解明胶蛋白和Ⅳ型、V型胶原,在细胞外基质的降解过程中起着关键作用,能够促进肿瘤细胞发生侵袭和转移。p185HER-2/neu蛋白是一种相对分子质量185×103的跨膜糖蛋白,由HER-2/neu基因编码,属于酪氨酸激酶受体家族,p185HER-2/neu蛋白在人类多种癌症中存在扩增及过量表达,并与肿瘤的侵袭性表型及生存期短密切相关。就基质金属蛋白酶-2和p185HER-2/neu蛋白的生物学特性,与卵巢癌侵袭转移和预后的关系及MMP-2和p185HER-2/neu蛋白的研究情况等予以综述。  相似文献   

11.
The HER2/c-erbB-2 gene encodes the epidermal growth factor receptorlike human homolog of the rat neu oncogene. Amplification of this gene in primary breast carcinomas has been show to correlate with poor clinical prognosis for certain cancer patients. We show here that a monoclonal antibody directed against the extracellular domain of p185HER2 specifically inhibits the growth of breast tumor-derived cell lines overexpressing the HER2/c-erbB-2 gene product and prevents HER2/c-erbB-2-transformed NIH 3T3 cells from forming colonies in soft agar. Furthermore, resistance to the cytotoxic effect of tumor necrosis factor alpha, which has been shown to be a consequence of HER2/c-erbB-2 overexpression, is significantly reduced in the presence of this antibody.  相似文献   

12.
A partially agonistic monoclonal antibody, 4D5, known to bind to the extracellular domain of p185HER2 and shown to inhibit long term growth of p185HER2-overexpressing breast cancer cells, was used to study signal transduction and phosphotyrosyl protein substrates associated with this receptor. Normal breast epithelial cells and breast carcinoma cells expressing low levels of p185HER2 were not affected by 4D5. HER2/neu-overexpressing breast cancer cells (BT-474 and SK-Br-3) exposed to 4D5 exhibited rapid phosphorylation of both p185HER2 and an associated 56-kDa phosphotyrosyl protein (ptyr56). Paralleling the 4D5- stimulated phosphorylation of p185HER2 and ptyr56 was a 5-10-fold induction of c-fos mRNA and phosphatidylinositol 4-kinase activity and a 2-fold induction of inositol 1,4,5-trisphosphate 3'-kinase activity. The increased phosphatidylinositol 4-kinase activity immunoprecipitated with p185HER2 and also co-eluted with ptyr56 from an antiphosphotyrosine immunoaffinity column. These results indicate that short term (less than 6 h) 4D5 activation of p185HER2 in overexpressing breast cancer cells produces agonistic-like signaling typical of homologous tyrosine kinase growth factor receptors such as epidermal growth factor receptor. The data also suggest that ptyr56 represents a novel phosphorylated substrate associated with 4D5-stimulated p185HER2.  相似文献   

13.
The neu proto-oncogene product has been found to exist in two interconvertible forms in G8/DHFR mouse fibroblasts. The 185-kilodalton form (p185) present in growing cells is replaced by a 175-kilodalton form (p175) under conditions of serum starvation. This low molecular weight form accounts almost exclusively for the phosphotyrosine content of the receptor and is associated with increased tyrosine kinase activity. Addition of serum, platelet-derived growth factor or tumor promoter induces conversion of p175 to p185 within minutes, and this increase in molecular weight is associated with phosphorylation of serine and threonine; removal of serum growth factors is followed by replacement of p185 with p175 over several hours. Unlike G8/DHFR cells, the human breast cancer cell line SK-Br-3 expresses a high molecular weight neu/HER2 receptor with unchanged phosphotyrosine content in both serum-starved and serum-stimulated cultures. These findings indicate that activation of the neu proto-oncogene product in G8/DHFR cells may be regulated in part by protein kinase C-mediated receptor transmodulation rather than by ligand availability alone.  相似文献   

14.
The neu proto-oncogene encodes a protein highly homologous to the epidermal growth factor receptor. The neu protein (p185) has a molecular weight of 185,000 Daltons and, like the EGF receptor, possesses tyrosine kinase activity. neu is activated in chemically induced rat neuro/glioblastomas by substitution of valine 664 with glutamic acid within the transmembrane domain. The activated neu* protein (p185*) has an elevated tyrosine kinase activity and a higher propensity to dimerize, but the mechanism of this activation is still unknown. We have used site-directed mutagenesis to explore the role of specific amino acids within the transmembrane domain in this activation. We found that the lateral position and rotational orientation of the glutamic acid in the transmembrane domain does not correlate with transformation. However, the primary structure in the vicinity of Glu664 plays a significant role in this activation. Our results suggest that the Glu664 activation involves highly specific interactions in the transmembrane domain of p185.  相似文献   

15.
p185neu is a receptor-like protein encoded by the neu/erbB-2 proto-oncogene. This protein is closely related to the epidermal growth factor (EGF) receptor, but does not bind EGF. We report here that incubation of Rat-1 cells with EGF stimulates tyrosine phosphorylation of p185. This effect is specific to EGF since neither platelet derived growth factor (PDGF) nor insulin, which also bind to receptors with ligand-stimulated tyrosine kinase activity, induced tyrosine phosphorylation of p185. The EGF-stimulated tyrosine phosphorylation of p185 and of the EGF receptor occurred with similar kinetics and EGF dose-responses, and both phosphorylations were prevented by down-regulation of the EGF receptor with EGF. Since p185 does not bind EGF, these results suggested that p185 is a substrate for the EGF receptor kinase. Incubation of cells with EGF before lysis stimulated the tyrosine phosphorylation of p185 in immune complexes. This suggested that EGF, acting through the EGF receptor, can regulate the intrinsic kinase activity of p185.  相似文献   

16.
17.
The HER2 protooncogene encodes a receptor tyrosine kinase, p185HER2. The overexpression of p185HER2 has been associated with a worsened prognosis in certain human cancers. In the present work we have screened a variety of different tumor cell lines for p185HER2 expression using both enzyme-linked immunosorbent and fluorescence-activated cell sorting assays employing murine monoclonal antibodies directed against the extracellular domain of the receptor. Increased levels of p185HER2 were found in breast (5/9), ovarian (1/6), stomach (2/3) and colorectal (5/16) carcinomas, whereas all kidney and submaxillary adenocarcinoma cell lines tested were negative. Some monoclonal antibodies directed against the extracellular domain of p185HER2 inhibited growth in monolayer culture of breast and ovarian tumor cell lines overexpressing p185HER2, but had no effect on the growth of colon or gastric adenocarcinomas expressing increased levels of this receptor. The most potent growth-inhibitory anti-p185HER2 monoclonal antibody in monolayer culture, designated mumAb 4D5 (a murine IgG1 antibody), was also tested in soft-agar growth assays for activity against p185HER2-overexpressing tumor cell lines of each type, with similar results. In order to increase the spectrum of tumor types potentially susceptible to monoclonal antibody-mediated anti-p185HER2 therapies, to decrease potential immunogenicity issues with the use of murine monoclonal antibodies for human therapy, and to provide the potential for antibody-mediated cytotoxic activity, a mouse/human chimeric 4D5 (chmAb 4D5) and a humanized 4D5 (rhu)mAb 4D5 HER2 antibody were constructed. Both engineered antibodies, in combination with human peripheral blood mononuclear cells, elicited antibody-dependent cytotoxic responses in accordance with the level of p185HER2 expression. Since this cytotoxic activity is independent of sensitivity to mumAb 4D5, the engineered monoclonal antibodies expand the potential target population for antibody-mediated therapy of human cancers characterized by the overexpression of p185HER2.  相似文献   

18.
The neu/c-erbB-2 oncogene encodes a 185 kDa protein closely homologous to the epidermal growth factor receptor. The protein product (p185) is a glycoprotein with an external domain and an internal domain with tyrosine kinase activity. Amplification and/or overexpression of p185 is related to several human adenocarcinomas. Subsequent studies demonstrated its presence in certain neuroendocrine (NE) neoplasms, including phaeochromocytomas, insulinomas and medullary thyroid carcinomas. However, relatively little is known about its role in normal cell growth regulation and development. Therefore, our objective was to determine whether neu/c-erbB-2 was expressed in normal NE tissues of different mammals, specially in humans, as it was in their neoplasms. We have examined by immunohistochemistry different endocrine glands (thyroid, pancreas, suprarrenal and hypophysis) and the small intestine of human beings, rats and guinea pigs, using two polyclonal antibodies raised against the intracytoplasmic part of the protein, and specific antigen absorption controls. We have found that a neu/c-erbB-2-like product occurs in all normal NE tissues examined: C cells of the thyroid gland, chromaffin cells of the adrenal medulla, pancreatic islets, enteroendocrine cells of the small intestine and, finally, scattered cells of the adenohypophysis, according to a typical granular immunohistochemical pattern. Our results indicate that normal NE cells share a new common antigen in their cytoplasms, a neu/c-erbB-2-like product, with a similar immunostaining pattern to that presented by the neoplasms derived from them.  相似文献   

19.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

20.
HER2胞外区基因的克隆及其在大肠杆菌中的可溶性表达   总被引:1,自引:0,他引:1  
采用反转录PCR和PCR方法分别克隆P185^HER2/neu胞外区基因和噬菌体M13K07g3p—N1结构域基因,然后将二偶联入pET-22b( )载体中,在大肠杆菌中进行融合表达。可溶性目的蛋白表达量占细菌可溶性表达产物总量的30%72右.并通过镍亲和层析纯化出目的蛋白。以上结果为从噬菌体抗体库中筛选抗P185^HER2/neu的抗体奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号