首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
蚱蝉(Cryptotympana atrata Fabricius)发声器结构:发声膜与鸣声   总被引:1,自引:1,他引:0  
蚱蝉单发声膜发出的click声波形由高幅值和低幅脉冲列(pulse train,PT)组成.高幅值PT含脉冲越多,主峰频率(main peak frequency,MPF)就越高.本文进一步阐明:1、高幅值PT多含有11个脉冲,当含有1,2,3个时,脉冲个数与MPF成准线性关系 超过三个为非线性关系.2、双发声膜发声的频带主要在2700Hz-6700Hz之间.数个click声组成的波形中,低幅值PT功率谱包络波近似于标准高斯型,MPF约为4900Hz;不同高幅值PT内含主脉冲的频率不同是MPF变化的主要因素.3、蚱蝉鸣声功率谱主要有三个子谱区A,B,及C,对应的频带依次约为2700Hz—3700Hz,3700Hz-5700Hz,及5700Hz—6700Hz.  相似文献   

2.
噪音环境下花臭蛙求偶鸣声特征分析   总被引:2,自引:1,他引:1  
2012年7月份,在黄山浮溪地区利用超声录音设备录制并分析了繁殖季节雄性花臭蛙(Odorrana schmackeri)个体的求偶鸣声。观察发现花臭蛙繁殖活动主要集中在7月中旬,繁殖高峰期活动无昼夜规律,全天均可见求偶鸣叫及抱对产卵等行为,并且多在浅水滩处活动。花臭蛙鸣声根据音节数和声谱特征可分为4种类型:即单音节音、婴儿音、双音节音和多音节断奏音,其中,单音节音、双音节音和婴儿音较为常见。利用Selena软件给出4种声音的语图以及各自对应的能谱图,利用Sound Analysis pro v1.2对单音节音、双音节音和婴儿音的鸣声特征参数进行定量分析,分析的声音参数包括鸣叫持续时间、音节数、音节持续时间、音节间隔、主频、脉冲率等。结果表明,花臭蛙鸣声的主频范围为1.8~4.5 k Hz(n=65)。鸣声不包括超声组分,主频峰值(3.1±0.7)k Hz,与前人电生理实验所得花臭蛙听觉敏感峰值一致,说明花臭蛙主要在这一频段进行通讯。对3种常见鸣叫音声音参数的单因素方差分析结果表明,双音节音与单音节音和婴儿音在声音持续时间上存在显著性差异(P0.01),双音节音和单音节音在第二谐波声强上也具有显著性差异(P=0.01)。花臭蛙的双音节音在3种常见鸣叫音中具有最长的持续时间,为(99.5±8.4)ms,故推测,双音节音为花臭蛙繁殖期主要求偶鸣声,并通过其鸣声时长的变化来体现自身品质的好坏。  相似文献   

3.
鸣叫是无尾两栖类声音通讯的重要环节之一。许多蛙类的鸣叫行为具有节律性,且受温度和湿度的影响。为研究红蹼树蛙(Rhacophorus rhodopus)的鸣声特征和鸣叫节律,2016年5—6月,采用录音机和指向性话筒,在野外录制了61只雄性红蹼树蛙的鸣声,并通过悬挂录音笔和自动温湿度记录仪研究其鸣叫节律(22 d)。结果发现:红蹼树蛙的鸣声分为单音节和多音节(音节数2~20;平均6.27±2.94)2种类型。与多音节鸣声的主频(2213.32±106.95 Hz)、音节时长(14.83±1.27 ms)和音节间隔(60.66±8.56 ms)相比,单音节鸣声的主频(2289.87±120.14 Hz)、音节时长(16.93±1.68 ms)和音节间隔(610.99±178.48ms)显著升高(P0.05),而2种鸣声的基频(单音节鸣声:212.51±21.63 Hz;多音节鸣声:225.39±26.80 Hz)无显著差异(P0.05)。红蹼树蛙每晚19:00至次日03:00具有鸣叫行为,22:00为高峰期。结果表明:红蹼树蛙主要通过改变鸣声的主频、音节时长、音节间隔以及音节数提高声音通讯效率。红蹼树蛙的鸣叫行为具有昼夜节律,且在一定程度上受温度和湿度的影响。  相似文献   

4.
鸣叫雄蝉的听觉反应及其与发声的内源关系   总被引:1,自引:0,他引:1  
黑蚱蝉 (C .atrata Fabr.)的静息雄蝉对 70dB(SPL)左右的刺激声脉冲反应的听神经复合动作电位 (简称“听神经电位”)的潜伏期和幅值分别平均为 ( 3 .92±0 .2 8)ms和 ( 0 .32± 0. 2 2 )mV ,鸣叫雄蝉虽对外部刺激声脉冲基本无反应 ,但对耦合在刺激声脉冲中的叫声脉冲有敏感反应 ,听神经电位的潜伏期和幅值分别为 ( 4 .1 6±0 .43)ms和 ( 0 .46± 0 .2 5 )mV .鸣叫雄蝉听神经电位前的负电位表征了发声与听觉神经回路之间存在内源联系 .  相似文献   

5.
2012年6月,对湖南省石门县壶瓶山国家级自然保护区神景洞短嘴金丝燕的回声定位叫声进行研究,在黑暗山洞内使用录音仪器录制其自由飞行状态的声音后使用声音软件进行分析.短嘴金丝燕捕食归巢时,快速飞入洞口,在洞内有光区域不发声,到达洞内黑暗区域后开始发出回声定位叫声,且飞行速度减慢.声音分析结果表明其回声定位叫声为双脉冲组的噪声脉冲串型(noise burst),组内脉冲间隔很短[(6.6±0.42)ms],组间脉冲间隔较长[(99.3±3.86) ms],两者差异显著(P<0.01).对比第一、第二脉冲声音参数发现,主频和脉冲时程差异不显著,第一、第二脉冲主频分别为(6.2±0.08) kHz和(6.2±0.10) kHz (P>0.05);脉冲时程分别为(2.9±0.12) ms和(3.2±0.17) ms (P>0.05);最高和最低频率差异显著,第一、第二脉冲最高频率分别为(20.1±1.10) kHz和(15.4±0.98) kHz (P<0.01),最低频率分别为(3.7±0.12) kHz和(4.0±0.09)kHz (P<0.05);第一脉冲频宽((16.5±1.17) kHz)宽于第二脉冲((11.4±1.01) kHz) (P<0.01);且第一脉冲能量[(-32.5±0.60) dB]高于第二脉冲[(-35.2±0.94) dB] (P<0.05).另外,短嘴金丝燕在黑暗山洞内的回声定位叫声还包含了部分超声波,最高频率可达33.2 kHz.  相似文献   

6.
黑蝉(C.atrata Fabricius.)鸣声的方向性和第三气门的功能   总被引:2,自引:0,他引:2  
黑蝉鸣声的波形结构无明显的方向性.单音节的重复周期和调幅脉冲列的间隔(I_1和I_2)分别为9.787±0.813ms、2.286±0.093ms和1.874±0.063ms.幅值特性有明显的方向性.主峰频率(MPF=5.47±0.11kHz)的幅值,头向和背向分别比尾向下降5.9dB和3.9dB,侧向和腹向分别增高1.1dB和2.3dB.两侧第三气门受阻后鸣声的波形结构和音色都产生明显变化.I_1和I_2分别为0.912±0.156ms和1.099±0.113ms,约为正常值的40—59%.有三个谱带,MPF为5775Hz,两侧谱带的峰值频率为4575Hz和7025Hz,分别下降1.5dB和3.4dB.  相似文献   

7.
丹顶鹤性活动的声行为研究   总被引:3,自引:0,他引:3  
丹顶鹤繁殖期的性活动可分为雄鹤求偶、雌鹤对雄性求偶的应答、两性交配和交配完结4个阶段,其相应的鸣声模式分别为雄性的求偶鸣声、雌性对雄性求偶的应答声和两性的对鸣声、两性对唱的交配声和两性的高声合唱。4个阶段鸣声都是以基本音的主频率(PF)为主音的单音调声,前3个阶段都带数个近似fn=nf0(f0=FP)关系的低幅值谐频成分。第4个阶段带数个近似fn=nf0(f0=FP)关系的高幅值谐频成分;品质因数(Q3dB)多半为4~6,声脉冲重复频率(RFP)一般为150~180Hz,而第2阶段声的RFP一般为180~260Hz。雄性鸣声的每个单次叫声中含有的音节数较少,一般不超过4个;而雌性鸣声比较复杂。每个单次叫声中含有的音节数较多,一般都在7~8个以上;但雌雄鸣声的每个音节都是由3个声脉冲组成。雄鹤鸣唱声频率变化范围较小,而雌鹤鸣唱声频率变化形式是由低到高达到高峰后又开始下降。4个阶段的鸣声都具有较好共鸣。只有第2阶段发声运动较快。而且发现雄鹤鸣唱单次鸣叫声的音节数“增多”。各阶段鸣声特性均存在差异,不同配偶间均存在显著差异,研究结果表明丹顶鹤雌雄都具有不同的鸣声,且其性活动过程中不同的鸣声行为具有较高的个体识别信号潜能。另外,求偶鸣叫声和求偶应答与对鸣声在性活动鸣声中起着决定性的作用。  相似文献   

8.
声音通讯对发声动物的生存和繁殖起着重要作用。但动物鸣声在时域上不同组成部分的生物学意义差异尚无定论。无尾两栖类的鸣声一般由音节和间隔组成,如雄性仙琴蛙Babina daunchina的广告鸣叫由一至十余个音节及持续时间约为150 ms的间隔组成,这为研究不同音节生物学意义的差异提供了便利。本研究采用优化的失匹配负波(MMN)范式,在播放标准刺激(白噪声)和偏差刺激(同一个广告鸣叫的5个音节)时,采集脑电信号,经过叠加平均后得到MMN。结果显示,第一个音节对应的MMN幅度最高,而且具有大脑左侧优势。由于MMN幅度表征刺激与记忆痕迹之间的差异,同时反映投入的大脑资源,据此推测第一个音节在蛙类声音通讯中起至关重要的作用。  相似文献   

9.
云南景洪地区蝉鸣特点的分析   总被引:6,自引:1,他引:6  
蒋锦昌 《昆虫学报》1985,(3):257-265
本文对云南景洪地区三种蝉:A.周氏尖瓣蝉Acutivalva chotti Yao,B.大狭瓣蝉Aola bindusara Distant,C.中华舌瓣蝉Linguvalva sinensis Chou et Yao的鸣声特点,及其晨鸣进行了分析。 蝉A和蝉B的鸣声都是由主峰频率为6.3 kHz的单次声群(SSG)和连续声群(CSG)组成的节律声。但是蝉A鸣声的节律平均周期、SSG中单次声的个数和CSG中调幅脉冲列的重复频率等都明显地与蝉B有区别。蝉C的鸣声是由重复频率约120Hz的调幅脉冲列组成的连续声,其主峰频率为5kHz。 蝉B的傍晚鸣声与午间鸣声相比较,其CSG中调幅脉冲列的重复频率和主峰频率等都是相同的,仅仅是节律的平均周期延长1.7秒,1/3倍频谱中低于1,000Hz的各个频率幅值明显下降。 这三种蝉晨间群鸣由前奏、高潮声和尾声组成。高潮声开始于6点(28±2)分,尾声终止于6点(43±2)分,是以24小时为周期的生物钟现象。 这些结果可能为蝉科分类和蝉的声通讯研究提供某些参考。  相似文献   

10.
蝉的变音调复合声和发声机制的分析   总被引:3,自引:1,他引:2  
蒋锦昌  徐慕玲 《昆虫学报》1991,34(2):159-165
蛙鸣蝉(Meimuna opalifera (Walk).ab.punctata Kato)的自然鸣声为“ji…guái”的重复单变调复合声.“ji”为主音频约4800Hz的准单音;“guái”的波形和主音频呈明显的演变,优势主频约2100Hz和2800Hz的变音调声.鸟鸣蝉(Meimuna opalifera (Walk)var.formosana Kato)的自然鸣声由重复的“jiū…ruǎ”和“jiū…gū…”合成的双变调复合声.“jiū”为基频和主频分别约625Hz和2100—2300Hz的准单音;“ruǎ”的波形和主音频呈明显的演变,基音和优势主频分别约575—625Hz和1550—1750Hz的变音调声.“gū”为优势主频约625Hz的准单音.变音调复合声不仅与腹部运动有关,而主要取决于发声肌的收缩特性和发声膜肋结构的振动特性.  相似文献   

11.
Mate finding in the phaneropterid bushcricket Ancistrura nigrovittata is achieved by a duet, where the female replies with a short sound to the male song. In experiments with artificial song models we analysed the parameters necessary for eliciting a female response. A verse of the male song consists of a group of 5–9 syllabes which after an interval of about 400 ms is followed by a final syllable. The female response was shown to depend on two processes: (i) recognition of the syllable group as belonging to a conspecific male and (ii) perception of the final syllable as a trigger. Critical parameters for the recognition process are the duration of syllables and syllable pauses, as well as the number of syllables in a group. However, even with an optimal syllable group, the response probability still depends on the interval between the syllable group and the final syllable. The female only responds when the final syllable of the male song occurs within a 250 ms long time window begining approximately 250 ms after the end of the male's syllable group. Her reply consists of a single tick, which follows the male's final syllable with a latency of only 25 ms.  相似文献   

12.
非洲蝼蛄(G.africana Palisot de Beauvois)的鸣声特点   总被引:3,自引:0,他引:3  
本文对北京非洲蝼蛄(G.africana.)的鸣声特点进行了分析.非洲蝼蛄的鸣声类似由调幅单音节组成的哨声.单音节的频谱特性基本相一致,其载波的主峰频率(MPF)调谐度(Q_(3dB))和MPF下降20dB的带宽分别为2539Hz、17.3和479Hz.但是哨声和单音节的周期是不均一的.在由302个哨声组成的鸣声段中,哨声周期和每个哨声内单音节平均周期的主要分布区分别为115-225ms和12.90-15.75ms.这些结果可能为蝼蛄声诱捕装置的生物原型和数学模型的研究提供某些依据.  相似文献   

13.
《Zoology (Jena, Germany)》2014,117(5):329-336
Many insects exhibit secondary defence mechanisms upon contact with a predator, such as defensive sound production or regurgitation of gut contents. In the tettigoniid Poecilimon ornatus, both males and females are capable of sound production and of regurgitation. However, wing stridulatory structures for intraspecific acoustic communication evolved independently in males and females, and may result in different defence sounds. Here we investigate in P. ornatus whether secondary defence behaviours, in particular defence sounds, show sex-specific differences. The male defence sound differs significantly from the male calling song in that it has a longer syllable duration and a higher number of impulses per syllable. In females, the defence sound syllables are also significantly longer than the syllables of their response song to the male calling song. In addition, the acoustic disturbance stridulation differs notably between females and males as both sexes exhibit different temporal patterns of the defence sound. Furthermore, males use defence sounds more often than females. The higher proportion of male disturbance stridulation is consistent with a male-biased predation risk during calling and phonotactic behaviour. The temporal structures of the female and male defence sounds support a deimatic function of the startling sound in both females and males, rather than an adaptation for a particular temporal pattern. Independently of the clear differences in sound defence, no difference in regurgitation of gut content occurs between the sexes.  相似文献   

14.
Cicada killers (Sphecius speciosus) are large solitary wasps capable of producing a high-amplitude buzzing sound. The buzz was acoustically characterized and its thermal and energetic effects examined. The sound was amplitude modulated, variable in frequency, had many harmonics, and was sometimes interrupted by broad-band buzz pulses. Cicada killer body size was directly related to sound pressure level and inversely related to frequency. Buzzing in males was 70 ± 0.8(21) dB (re 20 μPa measured 3 cm from the dorsum of the thorax) in sound pressure amplitude, with a fundamental frequency of 209 ± 6(20) Hz, while in females buzzes were 72.6 ± 8.3(30) dB and 152.5 ± 5.2(29) Hz. Males, the smaller of the sexes, had buzzes of significantly lower amplitude and higher frequency. Metabolic rate was 0.293 ± 0.024(13) W g−1, or 88% of maximal, during buzzing, and was 5–100 times more costly than file-and-scraper stridulation. Thorax temperature climbed rapidly during sound production and peaked at levels that were nearly optimal for flight. Buzzing may play a role in both interspecific and intraspecific defensive interations. Accepted: 16 July 1998  相似文献   

15.
Wing folding spicules, elytral binding patches, and elytral locking devices of adult male and female seed weevils, Smicronyx fulvus LeConte and S. sordidus LeConte, involved in stridulation are described. Sound is produced by both sexes of the two species when the plectrum, paired conical teeth located along the anterior margin of the dorsally elevated seventh sternite, is struck against an elongate file, the pars stridens, on the under surface of the apical portion of each elytron. A second plectrum, on the sixth tergite, is well-developed in males of both species and is used by males to produce sound before and during mating. Sex-specific and species-specific differences in the sound produced is attributed to structural variation in the pars stridens and the elytra. The pars stridens determines frequencies, while the elytra may further modify the sound. The frequency range for male S. fulvus is 1,000 cycles per second (cps) through 13,000 cps and for male S. sordidus is 2,500 cps through 13,000 cps. The frequency range for female S. fulvus is 2,000 cps through 11,500 cps and for female S. sordidus is 900 cps through 11,500 cps.  相似文献   

16.
The bushcricket Pantecphylus cerambycinus has two types of stridulatory mechanisms and acoustical signals. The elytro-elytral mechanism typical for tettigonioid bushcrickets is used to produce a narrow-band calling song (peak frequency 15 kHz). An abdomino-alary mechanism is used for disturbance stridulation. Its stridulatory file is situated on the hind edge of the abdominal tergites and consists of 50-70 parallel ridges, covering the whole width of the tergite. The broad-band sound (peak frequency 10 kHz) is produced by the contact between the file and ribs situated on the upper side of the hindwings which are folded in such a way that their upper side is directed toward the tergites. Defensive stridulation in bushcrickets is reviewed here, and its function and evolution discussed in the context of predator avoidance strategies. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Sound production in New Zealand giant wetas (Orthoptera: Anostostomatidae) includes a femoro-abdominal mechanism, a ticking sound when alarmed (mechanism unknown) and, in two species (Deinacrida rugosa and Deinacrida parva), a tergo-tergal mechanism on the dorsal overlapping surfaces of abdominal tergites. The tergo-tergal mechanism consists of bilaterally paired patches of short curved spines on the dorsal anterior margins of tergites II–V, rubbed by opposing patches of articulated hair sensilla on the underside of each overlapping tergite. The latter are extremely robust, modified mechanoreceptors inserted at an acute angle onto raised bases which greatly restrict movement. They rub sideways against the underlying spines and produce sound during telescopic abdominal contraction which accompanies defence leg kicking stridulation. Movement analysis showed that the abdominal tergites contract asynchronously during stridulation. Sound is produced during both phases of telescoping. Femoro-abdominal sound comprises loud clicks of broadband sound principally below 10 kHz; tergo-tergal sound is a softer hiss spreading broadly from 10 kHz to the ultrasonic above 20 kHz. We propose that the tergo-tergal mechanism may have evolved under predation pressure by the ground gleaning short tailed bat endemic to New Zealand. The use of mechanosensory hair sensilla for sound production is rare in arthropods.  相似文献   

18.
本文给出了鸣鸣蝉调音肌(TMc)的结构及其与发声膜(SM)的连接关系,揭示了TMc的调音功能。 TMc的前、后支分别与SM前缘底面的外、内侧连接,有助于牵拉SM,其纵轴与SM的膜面约成120°角。理论上估计,TMc对SM的向下垂直拉力和沿膜面的向前水平拉力可能分别约为总拉力的87%和50%。 TMc具有重要的调音功能。不仅影响每侧SM产生的2个脉冲列(PT)的脉冲幅值,每个PT中第1和2脉冲幅值平均约下降3—10dB;而且影响SM发声过程的均一性。同时,对鸣声谱中第二陪音的峰值频率的幅值有明显的影响,其13600—13900Hz、15015—15100Hz和16756—17090Hz的幅值分别平均下降约5.9、8.4和16.3dB。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号