首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we reported that, at similar voluntary force development during static submaximal intermittent contractions of the adductor pollicis muscle, fatigue developed more slowly in women than in men under conditions of normobaric normoxia (NN) (Acta Physiol Scand 167: 233-239, 1999). We postulated that the slower fatigue of women was due, in part, to a greater capacity for muscle oxidative phosphorylation. The present study examined whether a gender difference in adductor pollicis muscle performance also exists during acute exposure to hypobaric hypoxia (HH; 4,300-m altitude). Healthy young men (n = 12) and women (n = 21) performed repeated static contractions at 50% of maximal voluntary contraction (MVC) force of rested muscle for 5 s followed by 5 s of rest until exhaustion. MVC force was measured before and at the end of each minute of exercise and at exhaustion. Exhaustion was defined as an MVC force decline to 50% of that of rested muscle. For each gender, MVC force of rested muscle in HH was not significantly different from that in NN. MVC force tended to decline at a faster rate in HH than in NN for men but not for women. In both environments, MVC force declined faster (P < 0.01) for men than for women. For men, endurance time to exhaustion was shorter (P < 0.01) in HH than in NN [6.08 +/- 0.7 vs. 8.00 +/- 0.7 (SE) min]. However, for women, endurance time to exhaustion was similar (not significant) in HH (12.86 +/- 1.2 min) and NN (13.95 +/- 1.0 min). In both environments, endurance time to exhaustion was longer for women than for men (P < 0.01). Gender differences in the impact of HH on adductor pollicis muscle endurance persisted in a smaller number of men and women matched (n = 4 pairs) for MVC force of rested muscle and thus on submaximal absolute force and, by inference, ATP demand in both environments. In contrast to gender differences in the impact of HH on small-muscle (adductor pollicis) exercise performance, peak O(2) uptake during large-muscle exercise was lower in HH than in NN by a similar (P > 0.05) percentage for men and women (-27.6 +/- 2 and -25.1 +/- 2%, respectively). Our findings are consistent with the postulate of a higher adductor pollicis muscle oxidative capacity in women than in men and imply that isolated performance of muscle with a higher oxidative capacity may be less impaired when the muscle is exposed to HH.  相似文献   

2.
The extent to which diaphragmatic fatigue results from failure of neural drive has been investigated using twitch occlusion. Fatigue was induced by repeatedly generating transdiaphragmatic pressures (Pdi) of either 50 or 75% maximum Pdi (Pdimax) until approximately 10 min after the target Pdi could no longer be reached (Tlim). Maximal bilateral shocks delivered periodically to the phrenic nerves elicited Pdi twitches between breaths (Tr) and superimposed on the voluntary contractions (Ts). The ratio [1 - Ts/Tr], which provides an index of the degree of central nervous system muscle activation, increased as fatigue developed. However, superimposed twitches were still detectable at and beyond Tlim when all contractions involved maximal efforts. They were not seen in maximal contractions of the unfatigued muscle. Initially, the diaphragm electromyogram increased, but then declined. No impairment of neuromuscular transmission was seen. We conclude that at and beyond Tlim about one-half of the reduction in Pdimax resulted from reduced central motor drive; the remainder resulted from peripheral muscle contractile failure. No fatigue was evident during 50% Pdimax dynamic contractions.  相似文献   

3.
The mechanism for fatigue of the adductor pollicis was studied in normal subjects during maximal voluntary contractions (MVC) sustained for 90-100 s, by comparing the force and electrical response of this muscle to voluntary motor drive with that obtainable with artificial stimulation of the ulnar nerve. The adequacy of nerve stimulation was checked by recording simultaneously the electrical response of a nonfatiguing muscle, the abductor of the small finger. The decrease in force and in the natural electrical activity with fatigue was accompanied by a parallel decrease in the amplitude of synchronous muscle action potentials (M waves) evoked by artificial stimulation of the ulnar nerve at different frequencies. The decline in M-wave amplitude in the adductor pollicis was not due to a submaximal nerve stimulation, since the amplitudes recorded simultaneously from the nonfatiguing abductor digiti minimi remained unchanged. The force and the electrical responses from the adductor pollicis recovered in parallel with a half time of approximately 1 min. These results suggest that the loss of force of the adductor pollicis with fatigue and its subsequent recovery are largely determined by the extent of neuromuscular propagation failure. The slow recovery of the M-wave amplitude during repetitive stimulation suggests that it may be related to some aspect of muscle metabolism.  相似文献   

4.
It has been observed consistently and is well accepted that the steady-state isometric force after active muscle stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions. However, this so-called force enhancement has not been studied for submaximal voluntary efforts; therefore, it is not known whether this property affects everyday movements. The purpose of this study was to determine whether there was force enhancement during submaximal voluntary contractions. Human adductor pollicis muscles (n = 17) were studied using a custom-built dynamometer, and both force and activation were measured while muscle activation and force were controlled at a level of 30% of maximal voluntary contraction. The steady-state isometric force and activation after active stretch were compared with the corresponding values obtained during isometric reference contractions. There was consistent and reliable force enhancement in 8 of the 17 subjects, whereas there was no force enhancement in the remaining subjects. Subjects with force enhancement had greater postactivation potentiation and a smaller resistance to fatigue in the adductor pollicis. We conclude from these results that force enhancement exists during submaximal voluntary contractions in a subset of the populations and suggest that it may affect everyday voluntary movements in this subset. On the basis of follow-up testing, it appears that force enhancement during voluntary contractions is linked to potentiation and fatigue resistance and therefore possibly to the fiber-type distribution in the adductor pollicis muscle.  相似文献   

5.
The maximal force and median frequency (MF) of the electromyogram (EMG) power density spectrum (PDS) have been compared in disused (6 weeks' immobilization) and control (contralateral) human adductor pollicis muscles during fatigue induced by voluntary or electrically-triggered (30 Hz) contractions. The results indicated that after 6 weeks' immobilization, MF was not significantly different in disused and control muscles although the force and integrated EMG were drastically reduced during a maximal voluntary contraction (MVC; by 55% and 45%, respectively, n = 8). During sustained 60 s MVC, the force decreased at the same rate in immobilized and control muscles, but the shift of MF towards lower frequency values was smaller (P less than 0.05) in disused muscle as compared to control by (14% vs 28%, respectively). In electrically-induced fatigue, the force decrease and the MF shift were larger after inactivity (41% and 43% in one subject, and 50% and 54% in the other subject, respectively) as compared to control (29% and 34% in one subject, and 37% and 38% in the other subject, respectively). These results emphasize the caution that should be exercised when EMG signals are quantified by computing the power density spectrum. The different effects of fatigue during voluntary and electrically-imposed contractions in disused and control muscles indicated that immobilization induced changes in the neural command for the contraction which compensated, at least in part, for its decreased contractile efficiency and resistance to fatigue.  相似文献   

6.
The purpose of this study was to examine the relative influence of such factors as age, gender, and absolute force on the fatiguability of the human adductor pollicis muscle. 12 young males (YM, 25.3 +/- 2.1 y), 12 young females (YF. 23.5 +/- 2.1 y), 12 older males (OM, 71.7 +/- 5.6 y) and 12 older females (OF, 69.5 +/- 4.6 y) participated. Three minutes of intermittent (5 s contraction, 2 s rest) maximal voluntary contractions (MVC) were used to fatigue the adductor pollicis muscle; the ulnar nerve was also stimulated in each 2 s rest period to evoke a maximal twitch. Males were stronger than females in both voluntary and evoked force (PT) in the young age group (MVC: YM, 10.0 +/- 2.7 kg vs. YF, 6.6 +/- 1.1 kg, P < 0.05) (PT: YM, 0.99 +/- 0.21 kg vs. YF, 0.71 +/- 0.12 kg, P < 0.05). In the older adults, however, males were stronger only in the evoked twitch (OM, 0.73 +/- 0.24 kg vs. OF, 0.48 +/- 0.07 kg, P < 0.05). There was no significant effect of gender or absolute muscle force on relative fatigability; the only variable found to significantly affect fatigability was age. Older adults were significantly less fatigable than young adults as indicated by the voluntary fatigue index (FI) (percentage of force reduction from baseline; FI-young, 40.2 +/- 12.6% vs. FI-old, 25.2 +/- 12.3%). This age effect, however, was more prominent in males than females (FI-YM, 44.7 +/- 10.5% vs. FI-OM, 24.2 +/- 10.7%, P < 0.01; FI-YF, 37.8 +/- 14.1% vs. FI-OF, 26.3 +/- 14.5%, P = 0.13). In conclusion, age was found to be the strongest single predictor of fatigability during short duration, intermittent exercise in human adductor pollicis muscle.  相似文献   

7.
The relative roles of motor unit firing rate modulation and recruitment were evaluated when individuals with cervical spinal cord injury (SCI) and able-bodied controls performed a brief (6 s), 50% maximal voluntary contraction (50% MVC; target contraction) of triceps brachii every 10 s until it required maximal effort to achieve the target force. Mean (+/-SD) endurance times for SCI and control subjects were 34+/-26 and 15+/-5 min, respectively, at which point significant reductions in maximal triceps force had occurred. Twitch occlusion analysis in controls indicated that force declines resulted largely from peripheral contractile failure. In SCI subjects, triceps surface EMG and motor unit potential amplitude declined in parallel suggesting failure at axon branch points and/or alterations in muscle membrane properties. The force of low threshold units, measured by spike-triggered averaging, declined in SCI but not control subjects, suggesting that higher threshold units fatigued in controls. Central fatigue was also obvious after SCI. Mean (+/-SD) MVC motor unit firing rates declined significantly with fatigue for control (24.6+/-7.1 to 17.3+/-5.1Hz), but not SCI subjects (25.9+/-12.7 to 20.1+/-9.7Hz). Unit firing rates were unchanged during target contractions for each subject group, but with the MVC rate decreases, units of SCI and control subjects were activated intensely at endurance time (88% and 99% MVC rates, respectively). New unit recruitment also maintained the target contractions although it was limited after SCI because many descending inputs to triceps motoneurons were disrupted. This resulted in sparse EMG, even during MVCs, but allowed the same unit to be recorded throughout. These EMG data showed that both unit recruitment and rate modulation were important for maintaining force during repeated submaximal intermittent contractions of triceps brachii muscles performed by SCI subjects. Similar results were found for control subjects. Muscles weakened by SCI may therefore provide a useful model in which to directly study motor unit rate modulation and recruitment during weak or strong voluntary contractions.  相似文献   

8.
The activation of skeletal muscle during voluntary isometric contraction has been assessed by measuring the increase in force caused by a superimposed maximal shock to the motor nerve (the twitch-interpolation technique). When the muscle is held isometric, the increase in force with stimulation (superimposed twitch force) decreases with increasing voluntary force, and a line fit through the data can be extrapolated to maximal voluntary force at the zero twitch force axis. In a previous paper we questioned the applicability of this technique in situations where a high series compliance allows the muscle to shorten during the superimposed twitch. To explore effects of series compliance, we measured force of the adductor pollicis during voluntary isometric contractions with noncompliant and compliant loading devices. With the compliant loading device, superimposed twitch force was systematically less than with the noncompliant device, and the plot of superimposed twitch force vs. voluntary force was often concave upward, preventing easy extrapolation to maximal voluntary force. These findings are consistent with force-velocity characteristics of muscle and suggest that twitch-interpolation data must be interpreted with caution when the muscle is not held isometric during the superimposed twitch.  相似文献   

9.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   

10.
We studied the effect of caffeine on voluntary and electrically stimulated contractions of the adductor pollicis muscle in five adult volunteers. Caffeine (500 mg) was administered orally in a double-blind fashion. Electrical stimulation of the ulnar nerve was performed at 10, 20, 30, 50, and 100 Hz before and after a sustained voluntary contraction held at 50% of the maximal voluntary contraction (MVC). A brief tetanus at 30 Hz was also performed to calculate relaxation rate in the fresh muscle. Contractile properties, relaxation rate, and endurance were then assessed after caffeine and placebo, as well as the response of the fatigued muscle to different frequencies of stimulation. There was no difference in the maximal tension obtained with electrical stimulation (T100) or in the MVC between placebo and caffeine. The tensions developed with electrical stimulation at lower frequencies increased significantly with caffeine ingestion, shifting the frequency-force curve to the left, both before and after fatigue. Mean plasma caffeine concentration associated with these responses was 12.2 +/- 4.9 mg/l. We conclude that caffeine has a direct effect on skeletal muscle contractile properties both before and after fatigue as demonstrated by electrical stimulation.  相似文献   

11.
Our purpose was to determine the effect of eight different combinations of contraction intensity, duration, and rest on the rate of fatigue in vastus lateralis muscle. A single combination consisted of contractions at 30 or 70% maximal voluntary contraction (MVC), held for 3 or 7 s with 3- or 7-s rest intervals. Contractions were repeated until the subject could not hold the force for the requisite duration. At regular intervals during each experiment, a brief MVC, a single twitch, and the response to eight stimulation pulses at 50 Hz were elicited. The rate of fatigue was the rate of decline of MVC calculated from regression analysis. Mean rate of fatigue (n = 8) ranged from 0.3 to 25% MVC/min and was closely related (r = 0.98) to the product of the relative force and the duty cycle. Force from 50 Hz stimulation fell linearly and in parallel with MVC. Twitch force was first potentiated and then fell twice as fast as 50 Hz stimulation and MVC (p less than 0.05). Differentiated twitch contraction and relaxation rates were higher at potentiation and lower at the limit of endurance, compared with control values (p less than 0.05). The maximal electromyogram decreased 25% and the submaximal EMG increased to maximal by the end of the protocol, indicating that the entire motor unit pool had been recruited. The close relation between rate of fatigue and the force x time product probably reflects the off-setting interaction of contraction amplitude, duration, and rest interval. This occurs despite the changes in twitch characteristics and the apparent recruitment of fast fatiguing motor units.  相似文献   

12.
The perception of muscular effort was studied using estimation and production methods in the adductor pollicis and quadriceps. A psychometric scale (percentage magnitude) was used. Static contractions were studied in the adductor pollicis, and both dynamic (isokinetic) and static contractions were studied in quadriceps. Linear and logarithmic equations were fitted for the perceived effort as a percentage of the maximum in relation to the produced percentage maximal force or torque. The logarithmic exponent was around or above 1.0. No significant difference was found between mean exponent and intercept values for the adductor pollicis and the quadriceps, or when estimated or produced values for the two muscles were compared. There was no difference in the same subjects between the equations for static and dynamic contractions with low angular velocity of the quadriceps.  相似文献   

13.
Contractile failure during various types of exercise has been attributed to intramuscular metabolic changes. We examined the temporal changes in force-generating capacity and metabolic state during intermittent isometric contractions in humans. One-legged quadriceps contractions at 30% maximum voluntary contraction (MVC) were executed for 6 s, with 4 s of rest between. The decrease in force-generating capacity was tested from brief MVC's and short bursts of 50-Hz stimulation applied at 5-min intervals. After 1 min of exercise, the MVC force declined linearly and in parallel to the 50-Hz stimulation force, indicating that the contractile failure was due to intramuscular processes. After 30 min of exercise the MVC force had declined by approximately 40% compared with the value obtained after 1 min. In separate experiments the same contraction protocol was followed, but two-legged contractions were used. Muscle biopsies taken after 5, 15, and 30 min of exercise showed only minor changes in the concentrations of glycogen, lactate, creatine phosphate (CrP), and ATP. However, at exhaustion, defined as loss of ability to sustain the target force, the concentrations of CrP and glycogen were reduced by 73 and 32%, and muscle lactate concentration had increased to 4.8 mmol/kg wet wt. Thus the gradual decline in force-generating capacity was not due to lactacidosis or lack of substrates for ATP resynthesis and must have resulted from excitation/contraction coupling failure, whereas exhaustion was closely related to phosphagen depletion, without significant lactacidosis.  相似文献   

14.
The superimposed twitch technique is frequently used to study the degree of motor unit activation during voluntary effort. This technique is one of the preferred methods to determine the activation deficit (AD) in normal, athletic, and patient populations. One of the limitations of the superimposed twitch technique is its variability under given contractile conditions. The objective of this research was to determine the source(s) of variability in the superimposed twitch force (STF) for repeat measurements. We hypothesized that the variability in the AD measurements may be caused by the timing of the twitch force relative to the onset of muscle activation, by force transients during the twitch application, by small variations in the actual force from the nominal target force, and by variations in the resting twitch force. Twenty-eight healthy subjects participated in this study. Sixteen of these subjects participated in a protocol involving contractions at 50% of their maximal voluntary contraction (MVC) effort, whereas the remaining 12 participated in a protocol involving contractions at 100% of their MVC. Doublet-twitch stimuli were superimposed onto the 50 and 100% effort knee extensor muscle contractions, and the resting twitch forces, voluntary knee extensor forces, and STFs were then measured. The mean resting twitch forces obtained before and after 8 s of 50% of MVC were the same. Similarly, the mean STFs determined at 1, 3, 5, and 7 s into the 50% MVC were the same. The variations in twitch force were significantly smaller after accounting for the actual force at twitch application than those calculated from the prescribed forces during the 50% MVC protocol (P < 0.05). Furthermore, the AD and the actual force showed statistically significant negative correlations for the 50% MVC tests. The interpolated twitch torque determined for the maximal effort contractions ranged from 1 to 70%. In contrast to the protocol at 50% of MVC, negative correlations were only observed in 5 of the 12 subjects during the 100% effort contractions. These results suggest that small variations in the actual force from the target force can account for the majority of the variations in the STFs for submaximal but not maximal effort contractions. For the maximal effort contractions, large variations in the STF exist due to undetermined causes.  相似文献   

15.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

16.
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3-4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3-4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8-12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.  相似文献   

17.
Acoustic myography for investigating human skeletal muscle fatigue.   总被引:2,自引:0,他引:2  
Sounds produced during voluntary isometric contractions of the quadriceps muscle were studied by acoustic myography (AMG) in five healthy adults. With the subject seated, isometric force, surface electromyography (EMG), and AMG were recorded over rectus femoris, and the EMG and AMG signals were integrated (IEMG and IAMG). Contractions lasting 5 s each were performed at 10, 25, 50, 60, 75, and 100% of maximum voluntary contraction (MVC) force. Fatigue was then induced by repeated voluntary contractions (10 s on, 10 s off) at 75% MVC until only 40% MVC could be sustained. After 15 min of rest, the different force levels were again tested in relation to the fresh MVC. Both before and after fatiguing activity the relationships between force and IEMG [r = 0.99 +/- 0.01 (SD), n = 10] and force and IAMG (r = 0.98 +/- 0.02) were linear. After activity, however, the slopes of the regression lines for force and IEMG increased (P less than 0.01) but those for force and IAMG remained the same (P greater than 0.05). The present results clarify the relationship between AMG and isometric force in fatigued muscle without the problem of fatigue-induced tremor, which hampered previous studies of prolonged activity. This study contributes to the validation of AMG and shows that it is a potentially useful method for noninvasive assessment of force production and fatigue. Further studies to establish the origin of AMG activity are required before AMG can be accepted for use in neuromuscular physiology or rehabilitation.  相似文献   

18.
To investigate the time- and frequency-domain responses of mechanomyograms (MMGs) during the progressive fatigue induced by intermittent incremental contractions, a surface MMG was obtained from the three muscle heads of the quadriceps muscle in seven subjects while they performed isometric knee extensions lasting 7.6 min. Isometric intermittent incremental contractions started at 1% of the maximal voluntary contraction (MVC) for 3 s, with a 3-s relaxation period in between each contraction, and the contraction level was increased by 1% of MVC for every contraction (by 10% of MVC per min) up to exhaustion. Separate contractions with sufficient rest periods were also conducted to serve for the MMG characteristics without fatigue. The integrated MMG (iMMG) was linearly related to force in all of the muscles when fatigue was not involved. With regard to the incremental contractions, the relationship exhibited an ascending-descending shape, but the behavior was not the same for the individual muscle heads, especially for the rectus femoris muscle. A steep increase in the median frequency of MMG from around 60% of MVC corresponded to a decrease in iMMG. These results suggest that analysis of MMG in the time- and frequency-domain during an incremental protocol is a useful way of characterizing the motor unit recruitment strategy and fatigue properties of individual muscles. Accepted: 19 March 1998  相似文献   

19.
Whether the transition in fatigue processes between "low-intensity" and "high-intensity" contractions occurs gradually, as the torque requirements are increased, or whether this transition occurs more suddenly at some identifiable "threshold", is not known. We hypothesized that the critical torque (CT; the asymptote of the torque-duration relationship) would demarcate distinct profiles of central and peripheral fatigue during intermittent isometric quadriceps contractions (3-s contraction, 2-s rest). Nine healthy men performed seven experimental trials to task failure or for up to 60 min, with maximal voluntary contractions (MVCs) performed at the end of each minute. The first five trials were performed to determine CT [~35-55% MVC, denoted severe 1 (S1) to severe 5 (S5) in ascending order], while the remaining two trials were performed 10 and 20% below the CT (denoted CT-10% and CT-20%). Dynamometer torque and the electromyogram of the right vastus lateralis were sampled continuously. Peripheral and central fatigue was determined from the fall in potentiated doublet torque and voluntary activation, respectively. Above CT, contractions progressed to task failure in ~3-18 min, at which point the MVC did not differ from the target torque (S1 target, 88.7 ± 4.3 N·m vs. MVC, 89.3 ± 8.8 N·m, P = 0.94). The potentiated doublet fell significantly in all trials, and voluntary activation was reduced in trials S1-S3, but not trials S4 and S5. Below CT, contractions could be sustained for 60 min on 17 of 18 occasions. Both central and peripheral fatigue developed, but there was a substantial reserve in MVC torque at the end of the task. The rate of global and peripheral fatigue development was four to five times greater during S1 than during CT-10% (change in MVC/change in time S1 vs. CT-10%: -7.2 ± 1.4 vs. -1.5 ± 0.4 N·m·min(-1)). These results demonstrate that CT represents a critical threshold for neuromuscular fatigue development.  相似文献   

20.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号