首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The problem of ascertainment for linkage analysis.   总被引:2,自引:0,他引:2       下载免费PDF全文
It is generally believed that ascertainment corrections are unnecessary in linkage analysis, provided individuals are selected for study solely on the basis of trait phenotype and not on the basis of marker genotype. The theoretical rationale for this is that standard linkage analytic methods involve conditioning likelihoods on all the trait data, which may be viewed as an application of the ascertainment assumption-free (AAF) method of Ewens and Shute. In this paper, we show that when the observed pedigree structure depends on which relatives within a pedigree happen to have been the probands (proband-dependent, or PD, sampling) conditioning on all the trait data is not a valid application of the AAF method and will result in asymptotically biased estimates of genetic parameters (except under single ascertainment). Furthermore, this result holds even if the recombination fraction R is the only parameter of interest. Since the lod score is proportional to the likelihood of the marker data conditional on all the trait data, this means that when data are obtained under PD sampling the lod score will yield asymptotically biased estimates of R, and that so-called mod scores (i.e., lod scores maximized over both R and parameters theta of the trait distribution) will yield asymptotically biased estimates of R and theta. Furthermore, the problem appears to be intractable, in the sense that it is not possible to formulate the correct likelihood conditional on observed pedigree structure. In this paper we do not investigate the numerical magnitude of the bias, which may be small in many situations. On the other hand, virtually all linkage data sets are collected under PD sampling. Thus, the existence of this bias will be the rule rather than the exception in the usual applications.  相似文献   

2.
The effect of proband designation on segregation analysis   总被引:5,自引:4,他引:1       下载免费PDF全文
In many family studies, it is often difficult to know exactly how the families were ascertained. Even if known, the circumstances under which the families came to the attention of the study may violate the assumptions of classical ascertainment bias correction. The purpose of this work was to investigate the effect on segregation analysis of violations of the assumptions of the classical ascertainment model. We simulated family data generated under a simple recessive model of inheritance. We then ascertained families under different "scenarios." These scenarios were designed to simulate actual conditions under which families come to the attention of-and then interact with-a clinic or genetic study. We show that how one designates probands, which one must do under the classical ascertainment model, can influence parameter estimation and hypothesis testing. We demonstrate that, in some cases, there may be no "correct" way to designate probands. Further, we show that interactions within the family, the conditions under which the genetic study must function, and even social influences can have a profound effect on segregation analysis. We also propose a method for dealing with the ascertainment problem that is applicable to almost any study situation.  相似文献   

3.
Uncertainty about the ascertainment of human family data leads to a need for robust methods for estimating genetic and environmental effects. This in turn leads to a need for efficient techniques for estimating model parameters for data generated under one parametric model but analyzed under a second model. If the two models correspond to different ascertainment schemes for the same exponential family, simple formulas for the asymptotic means and standard errors of both conditional and unconditional MLEs can be derived. In an example for continuous sibship data, these formulas show that estimates derived from conditioning on proband value have greater asymptotic bias than two other estimators. Similarly, either conditioning on proband value or conditioning on the number of affected family members resulted in biases of up to 30% when ascertainment depended on the values of more than one affected family member.  相似文献   

4.
Several different methodologies for parameter estimation under various ascertainment sampling schemes have been proposed in the past. In this article, some of the methodologies that have been proposed for independent sibships under the classical segregation analysis model are synthesized, and the general likelihoods derived for single, multiple and complete ascertainment. The issue of incorporating the sibship size distribution into the analysis is addressed, and the effect of conditioning the likelihood on the observed sibship sizes is discussed. It is shown that when the number of probands in a sibship is not specified, the corresponding likelihood can be used for a broader class of ascertainment schemes than is subsumed by the classical model.  相似文献   

5.
The ascertainment problem arises when families are sampled by a nonrandom process and some assumption about this sampling process must be made in order to estimate genetic parameters. Under classical ascertainment assumptions, estimation of genetic parameters cannot be separated from estimation of the parameters of the ascertainment process, so that any misspecification of the ascertainment process causes biases in estimation of the genetic parameters. Ewens and Shute proposed a resolution to this problem, involving conditioning the likelihood of the sample on the part of the data which is "relevant to ascertainment." The usefulness of this approach can only be assessed by examining the properties (in particular, bias and standard error) of the estimates which arise by using it for a wide range of parameter values and family size distributions and then comparing these biases and standard errors with those arising under classical ascertainment procedures. These comparisons are carried out in the present paper, and we also compare the proposed method with procedures which condition on, or ignore, parts of the data.  相似文献   

6.
The problem of ascertainment in segregation analysis arises when families are selected for study through ascertainment of affected individuals. In this case, ascertainment must be corrected for in data analysis. However, methods for ascertainment correction are not available for many common sampling schemes, e.g., sequential sampling of extended pedigrees (except in the case of "single" selection). Concerns about whether ascertainment correction is even required for large pedigrees, about whether and how multiple probands in the same pedigree can be taken into account properly, and about how to apply sequential sampling strategies have occupied many investigators in recent years. We address these concerns by reconsidering a central issue, namely, how to handle pedigree structure (including size). We introduce a new distinction, between sampling in such a way that observed pedigree structure does not depend on which pedigree members are probands (proband-independent [PI] sampling) and sampling in such a way that observed pedigree structure does depend on who are the probands (proband-dependent [PD] sampling). This distinction corresponds roughly (but not exactly) to the distinction between fixed-structure and sequential sampling. We show that conditioning on observed pedigree structure in ascertained data sets obtained under PD sampling is not in general correct (with the exception of "single" selection), while PI sampling of pedigree structures larger than simple sibships is generally not possible. Yet, in practice one has little choice but to condition on observed pedigree structure. We conclude that the problem of genetic modeling in ascertained data sets is, in most situations, literally intractable. We recommend that future efforts focus on the development of robust approximate approaches to the problem.  相似文献   

7.
Procedures to estimate the genetic segregation parameter when ascertainment of families is incomplete, have previously relied on iterative computer algorithms since estimators with closed form are lacking. We now present the Minimum Variance Unbiased Estimator for the segregation parameter under any ascertainment probability. This estimator assumes a simple form when ascertainment is complete. We also present a simple estimator, akin to Li and Mantel's (1968) estimator, but without the restriction that ascertainment be complete. The performance of these estimators is compared with respect to asymptotic efficiency. We also provide tables that define the required number of families of a given size that need to be sampled to achieve a specific power for testing simple hypothesis on the segregation parameter.  相似文献   

8.
Feng R  Zhang H 《Human genetics》2006,119(4):429-435
Most genetic studies recruit high risk families and the discoveries are based on non-random selected groups. We must consider the consequences of this ascertainment process in order to apply the results of genetic research to the general population. In previous reports, we developed a latent variable model to assess the familial aggregation and inheritability of ordinal-scaled diseases, and found a major gene component of alcoholism after applying the model to the data from the Yale family study of comorbidity of alcoholism and anxiety (YFSCAA). In this report, we examine the ascertainment effects on parameter estimates and correct potential bias in the latent variable model. The simulation studies for various ascertainment schemes suggest that our ascertainment adjustment is necessary and effective. We also find that the estimated effects are relatively unbiased for the particular ascertainment scheme used in the YFSCAA, which assures the validity of our earlier conclusion.  相似文献   

9.
On resolving the ascertainment biases of the observed data in the geometric continuum vaffected-1 x P(sibship), where 0 less than v----infinity, four published ascertainments of rheumatic fever show excellent conformation with Mendelian recessive segregation, even in multiplex sibships. In two surveys in which ascertainment bias is near or a little above random sampling (v = 1), this conclusion is further corroborated by classical segregation analysis. The other two surveys have bias trends declining (v less than 1) very much below random sampling. Such levels of ascertainment bias, if defined through the ascertainment probability parameter pi, would be out of range because the range is from single ascertainment, where pi----0 to random sampling where pi = 1 and probability cannot exceed unity. Highly successful antimicrobial measures that would reduce the number of diseased sibs independent of the distribution of susceptible sibs could produce a dissociation of the gene-to-"rheumatic" relationship and thus explains the declining ascertainment bias.  相似文献   

10.
Autism is a severe developmental disorder of unknown etiology but with evidence for genetic influences. Here, we provide evidence for a genetic basis of several quantitative traits that are related to autism. These traits, from the Broader Phenotype Autism Symptom Scale (BPASS), were measured in nuclear families, each ascertained through two probands affected by autism spectrum disorder. The BPASS traits capture the continuum of severity of impairments and may be more informative for genetic studies than are the discrete diagnoses of autism that have been used by others. Using a sample of 201 nuclear families consisting of a total of 694 individuals, we implemented multivariate polygenic models with ascertainment adjustment to estimate heritabilities and genetic and environmental correlations between these traits. Our ascertainment adjustment uses conditioning on the phenotypes of probands, requires no modeling of the ascertainment process, and is applicable to multiplex ascertainment and multivariate traits. This appears to be the first such implementation for multivariate quantitative traits. The marked difference between heritability estimates of the trait for language onset with and without an ascertainment adjustment (0.08 and 0.22, respectively) shows that conclusions are sensitive to whether or not an ascertainment adjustment is used. Among the five BPASS traits that were analyzed, the traits for social motivation and range of interest/flexibility show the highest heritability (0.19 and 0.16, respectively) and also have the highest genetic correlation (0.92). This finding suggests a shared genetic basis of these two traits and that they may be most promising for future gene mapping and for extending pedigrees by phenotyping additional relatives.  相似文献   

11.
Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates are based on the original data used to detect the variant, the results are affected by an ascertainment bias known as the "winner's curse." The actual genetic effect is typically smaller than its estimate. This overestimation of the genetic effect may cause replication studies to fail because the necessary sample size is underestimated. Here, we present an approach that corrects for the ascertainment bias and generates an estimate of the frequency of a variant and its penetrance parameters. The method produces a point estimate and confidence region for the parameter estimates. We study the performance of this method using simulated data sets and show that it is possible to greatly reduce the bias in the parameter estimates, even when the original association study had low power. The uncertainty of the estimate decreases with increasing sample size, independent of the power of the original test for association. Finally, we show that application of the method to case-control data can improve the design of replication studies considerably.  相似文献   

12.
Detection bias in recessive ascertainment is generally considered to be confined in a narrow range between unbiased truncate ascertainment and single ascertainment, where methods of segregation analysis are established. While there are arguments for an extended range of analysis, a deflated detection progression below the unbiased level is still being considered as theoretical ground or ignored as sporadics. I show here a method of gauging the ascertainment levels of surveyed data in a geometric continuum. The method is valid for recessive segregation at any ascertainment level and in simplex or multiplex sibships of whatever degree of truncation. Four previously published surveys are used to show conformation with real data and the existence of detection trends spanning the range from the unsuspected very depressed bias level to the inflated level above single ascertainment.  相似文献   

13.
The increasing use of single nucleotide polymorphisms (SNPs) in studies of nonmodel organisms accentuates the need to evaluate the influence of ascertainment bias on accurate ecological or evolutionary inference. Using a panel of 1641 expressed sequence tag-derived SNPs developed for northwest Atlantic cod (Gadus morhua), we examined the influence of ascertainment bias and its potential impact on assignment of individuals to populations ranging widely in origin. We hypothesized that reductions in assignment success would be associated with lower diversity in geographical regions outside the location of ascertainment. Individuals were genotyped from 13 locations spanning much of the contemporary range of Atlantic cod. Diversity, measured as average sample heterozygosity and number of polymorphic loci, declined (c. 30%) from the western (H(e) = 0.36) to eastern (H(e) = 0.25) Atlantic, consistent with a signal of ascertainment bias. Assignment success was examined separately for pools of loci representing differing degrees of reductions in diversity. SNPs displaying the largest declines in diversity produced the most accurate assignment in the ascertainment region (c. 83%) and the lowest levels of correct assignment outside the ascertainment region (c. 31%). Interestingly, several isolated locations showed no effect of assignment bias and consistently displayed 100% correct assignment. Contrary to expectations, estimates of accurate assignment range-wide using all loci displayed remarkable similarity despite reductions in diversity. Our results support the use of large SNP panels in assignment studies of high geneflow marine species. However, our evidence of significant reductions in assignment success using some pools of loci suggests that ascertainment bias may influence assignment results and should be evaluated in large-scale assignment studies.  相似文献   

14.
When family data are ascertained through single selection based on truncation, a prevailing method of analysis is to condition the likelihood function on the proband's actual phenotypic value. An alternative method conditions the likelihood function on the event that the proband's measurement lies in the truncation region. Both methods are contrasted here by using Monte Carlo simulations; identical sets of data were analyzed using both methods. The results suggest that, under either method, (1) parameter estimates are nearly unbiased and (2) likelihood-ratio tests of null hypotheses are approximately distributed as chi 2. However, conditioning on the proband's actual phenotypic value yields considerably less efficient estimates and reduced power for hypothesis tests. A corresponding result also holds under complete ascertainment. It is argued, therefore, that whenever sufficient information is available on the nature of truncation, the alternative approach should be used.  相似文献   

15.
A genetic analysis is presented of data from 22 Brazilian sibships with cases of acheiropodia (the handless and footless families of Brazil). Segregation analysis performed using a 16K CDC 3100 computer showed a segregation frequency of .245 +/- .040, which is close to the expected value of .25. No sporadic cases were detected. The ascertainment of the probands was through multiple incomplete selection (pi = .55 +/- .07). The data are consistent with the hypothesis of an extremely rare autosomal recessive gene as the etiological factor in acheiropodia. Prevalence is estimated as 29 +/- 4, which is the same as the number of high risk cases; gene frequency equals .0009 +/- .0005, and the incidence at birth is 4 times 10(-6) by the indirect method or 7 times 10(-6) by the direct method. The frequency of heterozygotes at birth is assumed to be 0.18% (450 times the frequency of affected). Population size is approximately 10 million, and the number of founders on a unique-mutation hypothesis is estimated as about 500. All these estimates are first approximations and must be accepted with caution.  相似文献   

16.
Publication bias is a major concern in conducting systematic reviews and meta-analyses. Various sensitivity analysis or bias-correction methods have been developed based on selection models, and they have some advantages over the widely used trim-and-fill bias-correction method. However, likelihood methods based on selection models may have difficulty in obtaining precise estimates and reasonable confidence intervals, or require a rather complicated sensitivity analysis process. Herein, we develop a simple publication bias adjustment method by utilizing the information on conducted but still unpublished trials from clinical trial registries. We introduce an estimating equation for parameter estimation in the selection function by regarding the publication bias issue as a missing data problem under the missing not at random assumption. With the estimated selection function, we introduce the inverse probability weighting (IPW) method to estimate the overall mean across studies. Furthermore, the IPW versions of heterogeneity measures such as the between-study variance and the I2 measure are proposed. We propose methods to construct confidence intervals based on asymptotic normal approximation as well as on parametric bootstrap. Through numerical experiments, we observed that the estimators successfully eliminated bias, and the confidence intervals had empirical coverage probabilities close to the nominal level. On the other hand, the confidence interval based on asymptotic normal approximation is much wider in some scenarios than the bootstrap confidence interval. Therefore, the latter is recommended for practical use.  相似文献   

17.
We explore a Bayesian approach to selection of variables that represent fixed and random effects in modeling of longitudinal binary outcomes with missing data caused by dropouts. We show via analytic results for a simple example that nonignorable missing data lead to biased parameter estimates. This bias results in selection of wrong effects asymptotically, which we can confirm via simulations for more complex settings. By jointly modeling the longitudinal binary data with the dropout process that possibly leads to nonignorable missing data, we are able to correct the bias in estimation and selection. Mixture priors with a point mass at zero are used to facilitate variable selection. We illustrate the proposed approach using a clinical trial for acute ischemic stroke.  相似文献   

18.
A resolution of the ascertainment sampling problem. III. Pedigrees.   总被引:4,自引:3,他引:1       下载免费PDF全文
When nuclear families are sampled by an ascertainment procedure whose properties are not known, biased estimates of genetic parameters will arise if an incorrect specification of the ascertainment procedure is made. Elsewhere we have put forward a resolution of this problem by introducing an ascertainment-assumption-free (AAF) method, for nuclear family data, which gives asymptotically unbiased estimators no matter what the true nature of the ascertainment process. In the present paper we extend this method to cover pedigree data. Problems that arise with pedigrees but not with families--for example, the question of which families in a pedigree are "ascertainable"--are also considered. Comparisons of numerical results for pedigrees and nuclear families are also made.  相似文献   

19.
The power to detect departures from the theoretical proportion of new mutants in X-linked lethal disorders has been analyzed for several types of segregation analysis, including methods based on completely linked restriction fragment length polymorphisms. It is shown that all methods require large sample sizes in order to detect even large differences between male and female mutation rates. Ascertainment bias is shown to have a great effect on the outcome of the segregation analysis. All reviewed studies concerning the proportion of new mutants in Duchenne muscular dystrophy, whether they claimed equality or inequality between the male and female mutation rates, give insufficient evidence because of ascertainment bias and a too low power. An ascertainment bias-free method is given, with the advantage that information from many studies can be combined. By doing so, in the long run, even moderate departures from equality in mutation rates (if present) can be detected.  相似文献   

20.
We developed a likelihood-based method for testing for parent-of-origin effect in complex diseases. The likelihood formulations model parent-of-origin effect and allow for incorporation of ascertainment, as well as differential male and female ascertainment probabilities. The results based on simulated data indicated that the estimates of parental effect (either maternal or paternal) were biased when ascertainment was ignored or when the wrong ascertainment model was used. The exception was single ascertainment, in which we proved that ignoring ascertainment does not bias the estimation of parental effect, in a simple parent-of-origin model. These results underscore the importance of considering ascertainment models when testing for parent-of-origin effect in complex diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号